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Executive Summary

Security remains a paramount concern in the deployment of over-the-air (OTA) software updates, as
vulnerabilities in the vehicle software can expose systems to cyber threats. SUCCESS-6G-DEVISE
introduces a security-first approach by integrating Security as a Service (SECaaS), Al-enhanced threat
detection, and blockchain-based integrity verification. These mechanisms ensure that software
updates are authenticated, encrypted, and delivered securely, preventing unauthorized modifications
and cyberattacks. Experimental results on the ADRENALINE Testbed demonstrate enhanced security
enforcement, reduced threat detection times, and improved compliance with cybersecurity standards.
The adoption of Al-driven security policies and network slicing for isolated update distribution solidifies
SUCCESS-6G-DEVISE as a robust framework for secure vehicular software updates.
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1 Introduction

The increasing reliance on software-driven functionalities in modern vehicles necessitates a robust and
secure method for delivering over-the-air (OTA) software updates. As connected and autonomous
vehicle ecosystems continue to evolve, manufacturers and service providers must ensure that
software updates are not only timely but also protected from cyber threats. Vehicle-to-Everything
(V2X) communication is a key enabler of this transformation, facilitating seamless and reliable OTA
updates while incorporating advanced security measures. However, ensuring data integrity,
preventing unauthorized access, and safeguarding against cyberattacks remain critical challenges.
SUCCESS-6G-DEVISE aims to address these security concerns through the integration of Software-
Defined Networking (SDN), Security as a Service (SECaaS), and Al-driven threat detection.

A fundamental requirement for secure OTA software updates is ensuring end-to-end encryption and
authentication mechanisms to prevent unauthorized modifications. Cellular V2X (C-V2X) technology,
enabled by 5G and edge computing, enhances secure communication channels by enabling encrypted,
tamper-proof data exchanges between vehicles and update servers. The SUCCESS-6G-DEVISE
framework incorporates threat detection to continuously monitor OTA traffic for anomalies and
potential cyber threats. Additionally, the use of network slicing ensures that OTA updates are
transmitted over dedicated, isolated channels to prevent unauthorized interception and manipulation.

Beyond connectivity, cybersecurity remains a primary concern for OTA software updates. Outdated
vehicle software is a prime target for cyberattacks, necessitating stringent security protocols to
authenticate update sources and verify software integrity. SUCCESS-6G-DEVISE integrates Security as
a Service (SECaaS) mechanisms, incorporating Al-enhanced threat detection, real-time anomaly
detection, and blockchain-backed update verification. These security measures ensure that only
authorized updates are deployed, mitigating risks such as firmware tampering, data breaches, and
ransomware attacks.

Efficient security management is another key factor in optimizing OTA software updates. MEC-based
security processing reduces the computational burden on centralized cloud infrastructure by
distributing security monitoring and threat mitigation to edge nodes. This allows for real-time security
assessments, rapid threat response, and proactive risk mitigation. SUCCESS-6G-DEVISE employs threat
prediction models to dynamically adjust security policies based on evolving cyber threats, vehicle
density, and update criticality. By leveraging federated learning and distributed intelligence, the
system ensures proactive security enforcement while minimizing processing delays.

This deliverable presents primary results on the implementation and validation of secure OTA software
updates within a V2X connectivity framework. Experimental evaluations conducted on the
ADRENALINE Testbed demonstrate significant improvements in security enforcement, threat
mitigation efficiency, and update integrity verification. The integration of SDN, SECaaS, and Al-driven
security mechanisms has resulted in a scalable and adaptive solution capable of addressing the
evolving cybersecurity demands of connected vehicle ecosystems.

The preliminary findings from this research highlight the potential of SUCCESS-6G in revolutionizing
vehicular software update security methodologies. By leveraging cutting-edge networking and security
technologies, the proposed framework ensures that vehicles remain protected against cyber threats
while maintaining seamless software update deployment. As the automotive industry continues to
transition towards fully connected and autonomous systems, the implementation of secure and
efficient OTA update mechanisms will be instrumental in enhancing vehicle safety, data protection,
and regulatory compliance.
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The subsequent sections present the specific methodologies employed, experimental setup, and
detailed performance evaluations of the proposed secure OTA update system, providing a
comprehensive analysis of its benefits and potential industry applications.
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2 Use case 2: Automated software updates for vehicles

2.1 General description and overall objectives

Over-the-air software updates are delivered remotely from a cloud-based server, through a cellular
connection, to the connected vehicle with the aim of providing new features and updates to the
vehicle’s software systems. Such software updates may include changes to any software that controls
the vehicle’s physical parts or electronic signal processing system. In practice, the updates often tend
to apply more to user interfaces like infotainment screens and navigation (i.e., vehicle maps). The
update procedure, when performed over-the-air, enables a vehicle’s performance and features to be
continuously up-to-date and improved. The integration of advanced data analytics, automated and
remote service delivery eliminates the need for visiting repair/service centres, while technological
advancements in these updates give vehicle manufacturers the freedom to constantly “freshen up”
finished products remotely. C-V2X technology plays a crucial role in the update process, enabling
efficient, scalable, and seamless wireless communication between vehicles and software management
platforms. Figure 1 illustrates the implementation phases for this use case.

Figure 1: Implementation phases for the automated software updates

The overall objectives of this use case can be summarized as follows:
e Safer and more entertaining driving experience.

e Hardware and software components maintained and updated regularly during a vehicle’s
lifespan, implying a slower rate of depreciation.

e Prevention of cyberattacks targeting outdated software.
e Compliance to new rules and standards.
e Lower repair costs and elimination of labour charges.

e Lower warranty costs for manufacturers and lower downtime for customers

The key stakeholders involved in the use case are:

e The Mobile Network Operator (MNO), providing wireless connectivity between the vehicle,
the edge computing infrastructure, and the vehicular software management system. The MNO
is interested in optimizing the network operation by enhancing its energy efficiency and
coverage, while offering novel services to accommodate more users.

e The edge infrastructure provider, offering and managing computational resources at the edge
and supporting real-time services as well as virtualized network functions and Al-empowered
algorithms for advanced computational tasks.

e The equipment provider, providing in-vehicle embedded devices, e.g., hardware components
and sensor devices, that can be remotely reconfigured and updated.

e The vehicular software management system, operated by the equipment provider or vehicle
manufacturer, is responsible for issuing periodically new software updates.

e The software developers, devising and applying data-processing modules for automated
update of vehicular components’ software.
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e The cloud providers can optionally be involved, offering additional computational resources
to host the service.

Note that, without loss of generality, some stakeholders may assume multiple roles or, equally, some
roles may be assumed by multiple stakeholders. For instance, the MNO could also be the owner of the
edge infrastructure, or an equipment provider may also be responsible for the operation of the
vehicular software management system or outsource it to a third party.

2.2 User story 2.2: Over-the-air vehicular software updates with security
guarantees

Over-the-air software updates deliver critical information to on-board vehicular devices. As vehicles
introduce new functionalities (such as advanced driver-assist features like self-parking) and the
number of connected vehicles keeps growing, automakers need to handle the regular software
updates required in a secure and trustworthy way. Thus, the integration of intelligent security
enforcement solutions and effective prediction/mitigation of security threats are deemed essential for
the secure operation of over-the-air update service and to preserve trustworthiness. Additionally, by
instantiating virtual security functions and by exploiting secure edge provisioning empowered by Al-
driven capabilities, the threat risk for software updates can be further minimized.

2.3 Overall UC2 architecture and network deployments

The elaboration of Figure 2 details a system architecture specifically designed for Over-the-air (OTA)
software updates, integral to the SUCCESS-6G framework. This architecture addresses the complex
requirements of the use case 2. In particular, Figure 2 Proposed overall UC2 system architecture
provides a high-level system architecture for OTA vehicular software updates within a robust Vehicle-
to-Everything (V2X) connectivity framework, leveraging ETSI TeraFlowSDN for network automation
and control. The figure illustrates the key components enabling software update dissemination to
connected vehicles via 5G mobile edge computing (MEC) nodes. At the core of this system is the ETSI
TeraFlowSDN Controller, which manages the network infrastructure, including the gNBs (5G base
stations) and Transport Network. The NFV Orchestrator (NFV-O) enables dynamic deployment and
scaling of virtualized network functions, such as Distributed User Plane Functions (D-UPF) within MEC
nodes.

Each edge node (Edge Node 1 & Edge Node 2) hosts a Software Update Server, responsible for caching
and distributing updates to C-V2X On-Board Units (OBU) in connected vehicles. These updates are
delivered via the 5G network, passing through the transport network, controlled by the TeraFlowSDN
controller. To ensure security and integrity, the system integrates a Security-as-a-Service module,
providing firewall protection and secure communications for software updates. The updates originate
from local cloud infrastructure, which includes 5G Core Control Plane components such as SMF
(Session Management Function), AMF (Access and Mobility Management Function), and UPF (User
Plane Function). The software update client within the vehicle's C-V2X OBU interacts with the Software
Update Servers over the network, ensuring efficient and timely delivery of critical updates for vehicle
applications.
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Figure 2 Proposed overall UC2 system architecture

This architecture highlights the interplay between 5G, MEC, SDN, and V2X technologies to facilitate
secure and efficient OTA software updates, enabling reliable vehicle connectivity and automation.

2.4 Facilities for use case 2

2.4.1 ADRENALINE Testbed

The ADRENALINE testbed® is an open and disaggregated SDN/NFV-enabled packet/optical transport
network and edge/core cloud infrastructure for 6G, 10T/V2X and Al/ML services, constantly evolving
since its creation in 2002, and reproducing operators’ networks from an End to End (E2E) perspective
and Data Centre Interconnect (DCl). The figure below summarizes the networking scenario of the
ADRENALINE testbed, to be used for the execution of SUCCESS-6G-DEVISE.
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Figure 3 ADRENALINE Testbed to be used for Use Case 2

ADRENALINE spans the access, aggregation-metro, and core segments, and includes distributed Data
Centres (DCs) geographically dispersed and located at the edge or in central locations. As depicted in
Figure 3, the key elements are: (1) an SDN-controlled optical network (flexi-grid DWDM photonic
mesh), with 4 ROADM nodes and over 600km of amplified DWDM links. Currently, all the links of the
mesh are based on amplified C-band transmission, but one of them also supports amplified flexible L-
band transmission; (2) packet-optical nodes with optical pluggable transceivers, providing aggregated
400G data rates (muxponders) for transporting traffic flows between the access networks and the core
central offices or data centers; (3) programmable SDN-enabled S-BVTs able to transmit multiple flows
at variable data rate/reach up to 1 Th/s; (4) a Packet Access Network (PAN) connected to the metro
infrastructure with IP Cell Site Gateways (CSGs); (5) a PON tree formed by disaggregated Optical
Network Terminals (ONTs), offering connectivity to several Customer Premises Equipment (CPEs).
ADRENALINE also includes a Portable 5G RAN platform for testing and validation of 5G and beyond use
cases.

The different access networks (i.e., PON) and the photonic mesh are managed by dedicated
orchestrators and controllers (e.g., CTTC FlexOpt Optical Controller) to automatically handle the
connectivity services entailing the de-/allocation of heterogeneous network resources (i.e., packet and
optical devices).

The domain-specific controllers and orchestrators are coordinated hierarchically by the ETSI
TeraFlowSDN controller, which exposes a North Bound Interface to allow interaction of resources to
request network connectivity services. This service platform orchestrates the transport
(optical/packet) and computing:

i) Multi-VIM (virtualized infrastructure managers) combining OpenStack and K8s controllers
for virtual machines and containers;

ii) TeraFlowSDN controller for E2E connectivity among virtual machines, containers, and
endpoints. The service platform is also in charge of managing the life-cycle of network
services and network slices: i) a network service is composed of chained NFs; ii) a network
slice is composed of one or several concatenated network services that deploy a set of
NFs.

2.4.2 Nextcloud platform

NextCloud is an open-source private cloud platform based on a dedicated server with extensive
resources, orchestrated by a Debian-based distribution called Proxmox to manage virtualization
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environments, offering a simple web interface to manage both virtual machines (VMs) and containers.
These machines can be of various types, but we ideally use two of them:

e KVM (Kernel-based Virtual Machine): It is used for full virtualization, allowing to run complete
operating systems as VMs.

e LXC (Linux Containers): It also supports LXC containers, which are lighter and more efficient
environments to run applications or services.

These virtual machines can be scaled on demand, whether in storage, memory, or network resources.
NextCloud bundles core technologies such as PHP, JavaScript, HTML, CSS, MySQL, SQLite, Redis and
Nginx, and provides full control over the data and privacy, offering self-host option to deploy custom
applications. The following capabilities ensure that NextCloud is ideal for delivering SUCCESS-6G-
DEVISE catalogue services such as vehicle data storage and Firmware Over-The-Air (FOTA). NextCloud
will be fully customized to fit the needs of the project.
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3 Over-the-air vehicular software updates with security guarantees:
Implementation at the ADRENALINE testbed

3.1 Security as a Service

Figure 4 illustrates a sophisticated network architecture designed for service management through
Software Defined Networking (SDN) and Network Function Virtualization (NFV) technologies. At the
apex of this architecture is the API (NBI), the Northbound Interface, which functions as a pivotal point
of access for service management, facilitating communication between the service management layers
and the underlying network infrastructure.

Central to this architecture is the Security as a Service component. It includes a Slice Manager, a
component that manages network slices—distinct segments of the network tailored for specific
operational requirements, each with its own set of performance parameters and policies. This
management is intricately connected to the SSLA & Policies Mapper, which translates service level
agreements and policies into practical, enforceable rules for each network slice.

These slices are cataloged in the Slice DB (Abstracted Domain Resources), a comprehensive repository
that maintains details about network slices and their corresponding resources. The Orchestrator
operates in concert with the Slice DB, orchestrating the deployment and lifecycle of network services
across various network segments. The Provider Mapper (SBI), or the Southbound Interface,
communicates with physical and virtual network functions, translating the orchestrated service
management directives into actionable tasks within the network fabric. This includes the NFV
Orchestrator (NFV-O), which is responsible for the overall management of virtualized network
functions, ensuring their proper instantiation, scaling, and termination.

At the foundation of the network control plane is the Transport SDN controller, which governs data
plane devices such as routers and switches, enabling efficient and dynamic routing of traffic within the
network. The infrastructure components, including vehicles, cellular towers, and data centers, are
depicted at the bottom of the figure, highlighting the endpoints of this network architecture. These
components represent the tangible elements where data and services are consumed and delivered,
completing the ecosystem of this advanced network architecture.

4
4

P E—
REST calls

API (NBI) SECURITY AS

+ A SERVICE|

Slice DB (Abstracted .
SSLA & Policies ,| SsLAg
Mapper REST calls Policies

| oss/Bss

Domain Resources) Slice Manager

Orchestrator
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A 4
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y ]
: ]
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Figure 4 Proposed architecture for OTA vehicular software updates with security guarantees
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3.2 Requirements and KPIs

The rapid evolution of connected vehicle technology has heightened the need for stringent security,
reliability, and performance standards. As modern vehicles increasingly depend on software to manage
critical functionalities—ranging from engine control and braking systems to autonomous navigation—
ensuring robust mechanisms for software updates and network management is paramount. To
address these concerns, this section outlines the key requirements that safeguard automotive
software ecosystems against a broad spectrum of cyber threats while maintaining operational
efficiency.

Each requirement detailed in the following subsections underscores a unique aspect of secure and
reliable software lifecycle management. From Secure Software Update Management that focuses on
authentication, authorization, and integrity checks, to Security as a Service (SECaaS) offering scalable
and automated policy enforcement, these requirements collectively establish a comprehensive
defense strategy. Further, Software-Defined Networking (SDN) & Network Function Virtualization
(NFV) Integration and Slice-Based Service Management enable agile, resource-efficient network
operations tailored to the varying needs of different vehicles and update types. Finally, Northbound
and Southbound Interface Support ensures seamless interoperability across multiple platforms and
vendors, facilitating smooth update distribution and real-time monitoring.

Together, these requirements form a holistic framework designed to protect and enhance the
software-driven functionalities of connected vehicles. By emphasizing security, scalability, and
interoperability, they serve as the foundational building blocks for maintaining trust, minimizing risks,
and supporting the advanced features of next-generation automotive systems.

3.2.1 Requirements
3.2.1.1 Secure Software Update Management

Ensuring that software updates are securely distributed is critical to preventing unauthorized
modifications, malware insertion, or other cybersecurity threats. The system must authenticate and
authorize update sources before distribution, verifying the integrity and authenticity of software
packages before deployment to vehicles. This process helps mitigate security risks associated with
malicious attacks or accidental corruption of updates, ensuring that only trusted software is installed
on connected vehicles.

The rationale behind this requirement is to enhance the safety and reliability of vehicular software
systems. Modern vehicles rely heavily on software to control essential functionalities, including
braking, navigation, and autonomous driving. Any compromise in the update process could lead to
severe security breaches or operational failures. By implementing stringent authentication
mechanisms and encryption methods, the system can maintain trust in over-the-air updates while
complying with automotive cybersecurity standards.

3.2.1.2 Security as a Service (SECaaS)

The security framework should be designed as a scalable and adaptable service that automates
security policy enforcement across different network slices. This ensures a consistent security posture
while accommodating various levels of security requirements based on the specific needs of each
vehicle or update type. Security policies should be dynamically adjustable to respond to evolving cyber
threats and regulatory requirements without requiring significant infrastructure changes.

The rationale for integrating Security as a Service is to provide a centralized and efficient approach to
managing security controls across multiple network domains. Instead of applying security
configurations manually to individual network components, SECaaS enables automation, monitoring,
and policy enforcement in a streamlined manner. This approach reduces operational overhead,
improves compliance with cybersecurity regulations, and enhances the ability to respond quickly to
emerging threats in the automotive ecosystem.
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3.2.1.3 Software-Defined Networking (SDN) & Network Function Virtualization (NFV) Integration

The system must leverage SDN and NFV to optimize network resource allocation, enhance scalability,
and ensure efficient update distribution. SDN enables centralized network control, while NFV provides
flexible network functions that can be deployed dynamically as needed. Together, these technologies
support real-time monitoring and adaptation of network conditions, ensuring that software updates
reach their intended destinations with minimal latency and high reliability.

The rationale behind integrating SDN and NFV is to address the growing complexity of vehicular
networks, where software updates must be transmitted efficiently over heterogeneous network
infrastructures. By decoupling network control and function deployment from traditional hardware
dependencies, SDN and NFV enable more agile, responsive, and cost-effective network management.
This improves update delivery speeds and enhances the resilience of the network infrastructure,
preventing bottlenecks and service disruptions.

3.2.1.4 Slice-Based Service Management

Network slicing must be implemented to create isolated virtual networks tailored to different
operational needs. Each slice should be assigned specific security policies and Quality of Service (QoS)
parameters to ensure that critical updates receive the highest priority. The slice database should store
metadata about network slices, facilitating efficient resource allocation and policy enforcement.

The rationale for using network slicing is to ensure that essential updates, such as security patches or
firmware upgrades, are delivered with guaranteed performance and minimal risk of interference.
Vehicles operating in different regions or under varying network conditions may have different
connectivity requirements. Slicing enables customized resource allocation, allowing for differentiated
services while maintaining strong security and performance guarantees.

3.2.1.5 Northbound and Southbound Interface Support

The system must expose well-defined interfaces for seamless integration with external platforms. The
Northbound Interface (NBI) should facilitate communication with service management applications,
while the Southbound Interface (SBI) should interact with physical and virtual network functions. These
interfaces should support standardized protocols to ensure compatibility across different vendors and
infrastructure providers.

The rationale for exposing standardized interfaces is to promote interoperability and simplify
integration with third-party applications, including automotive manufacturers, cybersecurity
monitoring tools, and cloud-based orchestration platforms. By enabling flexible API interactions, the
system can support automated update workflows, real-time security monitoring, and policy-driven
update deployments, enhancing the overall efficiency of over-the-air update management.

3.2.2 Key Performance Indicators (KPls)
3.2.2.1 End-to-end encryption success rate (%)

This KPl measures the effectiveness of encryption mechanisms in securing data transmission by
assessing the percentage of successful encrypted transmissions without breaches.

Encryption is crucial for ensuring the confidentiality and integrity of software updates during
transmission. A high success rate indicates a robust security framework, reducing the risk of data
tampering or interception by malicious actors.

Target Value: At least 99.9% of transmitted updates should be successfully encrypted without any
detected breaches.

3.2.2.2 Software update delivery latency (ms)

This KPI measures the time taken for an update to reach its destination from the source.
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Low latency is essential for delivering time-sensitive security patches and feature updates to vehicles.
Delays in updates could leave vehicles vulnerable to exploits or operational inefficiencies.

Target Value: The system should deliver critical updates within 500 ms in optimal network conditions.
3.2.2.3 SLA compliance rate (% adherence to defined policies)

This KPI evaluates how well the system adheres to predefined service level agreements (SLAs)
regarding security, reliability, and performance.

Ensuring SLA compliance helps maintain trust with stakeholders and guarantees that vehicles receive
updates as promised within set parameters.

Target Value: At least 98% adherence to SLAs across all update transactions.
3.2.2.4 Mean Time to Detect (MTTD)

MTTD is the time elapsed from the moment a security threat or attack occurs to the point where it is
successfully detected by the security system. It represents the efficiency of threat detection
mechanisms, including Al-driven inference models, log monitoring, and real-time anomaly detection.

Importance: A lower MTTD is critical for early threat identification, reducing the window of exposure
and limiting potential damage. Faster detection enables security teams to respond proactively before
an attacker can exploit vulnerabilities. Optimizing MTTD is particularly important in cloud-native
environments, 5G networks, and real-time cybersecurity frameworks, where high-speed attack
detection is required to protect critical infrastructure and services.

Target Values/Thresholds: Ideal: Less than 1 minute for Al-enhanced cybersecurity systems with real-
time monitoring. Acceptable: Between 5-10 minutes in standard SOC (Security Operations Center)
environments with human-assisted analysis. Critical Risk: Above 30 minutes, as this increases the
likelihood of widespread damage, extended data breaches, and regulatory non-compliance.

3.2.2.5 Mean Time to Respond (MTTR)

MTTR is the time elapsed from the moment a security threat is detected to the complete mitigation or
resolution of the issue. It includes incident triage, threat analysis, containment, mitigation, system
restoration, and validation to ensure the threat has been neutralized.

Importance: A lower MTTR reduces the impact of cyberattacks by minimizing system downtime, data
breaches, and business disruptions. In environments like telco networks, 10T ecosystems, and cloud-
native microservices, rapid response ensures business continuity and compliance with cybersecurity
policies. Automated orchestration and Al-driven remediation significantly improve MTTR by enabling
real-time threat containment and recovery.

Target Values/Thresholds: Ideal: Under 5 minutes for automated threat response mechanisms (e.g.,
SDN-controlled ACL updates, automated patching). Acceptable: 30-60 minutes in cases where manual
intervention or forensic analysis is required. Critical Risk: Above 2 hours, as prolonged response times
increase financial losses, system disruptions, and potential data exfiltration risks.

3.3 UC2 Architecture and network deployment

Figure 5 illustrates a comprehensive architecture for enabling software updates in a Cellular Vehicle-
to-Everything (C-V2X) environment using 5G, Multi-access Edge Computing (MEC), Network Function
Virtualization (NFV), and Software-Defined Networking (SDN). The system is structured into multiple
layers to ensure efficient data processing, low-latency communication, and secure software updates
for in-vehicle systems. These layers include the Orchestration Layer, 5G Core Control Plane (Local
Cloud), MEC Layer (Edge Nodes), Network Infrastructure Layer, and In-Vehicle Layer. Among these, the
dark blue elements play a crucial role in orchestrating network functions, ensuring security, and
enabling seamless data transmission.
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Figure 5 Instantiation of SUCCESS-6G-DEVISE architecture for OTA vehicular software updates with security
guarantees

At the top of the architecture, the Orchestration Layer is responsible for managing the deployment
and lifecycle of network functions using NFV and SDN technologies. The NFV Orchestrator (NFV-O)
oversees the instantiation, scaling, and management of Distributed User Plane Functions (D-UPFs),
which are deployed closer to the edge to reduce latency. Alongside NFV-O, the End-to-End SDN
Controller provides centralized control over the transport network, ensuring efficient data routing and
dynamic policy enforcement. This integration of NFV and SDN allows for adaptive network resource
management, dynamic traffic steering, and enhanced service reliability, which are essential for
delivering real-time software updates to connected vehicles.

The Multi-access Edge Computing (MEC) layer is a critical part of the architecture, hosting D-UPFs and
Software Update Servers at edge nodes. The D-UPF (Distributed User Plane Function) is responsible
for offloading data traffic from the 5G core, allowing localized data processing and reducing
dependency on central cloud infrastructure. This offloading mechanism enhances the responsiveness
of V2X applications, including OTA software updates. The Software Update Servers deployed at the
edge nodes ensure that vehicles receive software patches and security updates efficiently, minimizing
downtime and optimizing network resource utilization. By leveraging MEC, the system reduces latency,
improves update delivery speed, and enhances overall network performance.

To protect the integrity and confidentiality of software updates and vehicular communications, the
architecture incorporates a Security as a Service framework. This module ensures that all software
updates are encrypted, verified, and transmitted securely to prevent cybersecurity threats such as
man-in-the-middle attacks, data tampering, and unauthorized access. The security framework is tightly
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integrated with the MEC layer and orchestration systems, ensuring continuous threat monitoring,
anomaly detection, and compliance with cybersecurity policies. By implementing security measures at
both the orchestration and edge levels, the system guarantees the safety and reliability of C-V2X
applications.

At the transport network level, gNBs (Next-Generation Base Stations) facilitate communication
between vehicles and the edge computing infrastructure. These base stations provide high-speed, low-
latency connectivity to ensure that software update clients in vehicles (C-V2X OBUs) receive real-time
updates. The transport network is dynamically managed by the E2E SDN controller, which optimizes
routing paths based on network congestion, traffic demand, and security policies. Within the In-Vehicle
Layer, the Software Update Client ensures that received updates are properly installed, validated, and
synchronized with the vehicle's onboard systems. This integration ensures that connected vehicles
remain updated with the latest firmware, security patches, and feature enhancements without
requiring physical intervention.

3.4 Exposed interfaces

We have developed two different interfaces, dedicated to attack detector and attack mitigator.

3.4.1 Attack Detector

The provided Protobuf definition outlines an AttackDetector service within the "attack_detector"
package, leveraging proto3, the latest version of the Protobuf syntax. This service is responsible for
configuring and managing an attack detection system that integrates with Elasticsearch, Kafka, and
machine learning-based threat detection.

The AttackDetector service is defined as a gRPC-based service that enables clients to configure and
retrieve attack detection settings remotely. It consists of six Remote Procedure Call (RPC) methods,
each of which facilitates specific operations. The ConfigureDetector method allows clients to configure
the attack detector using a DetectorConfig message, which includes Elasticsearch and Kafka settings
along with a minimum machine learning confidence level for attack detection. The
GetDetectorConfiguration method enables clients to retrieve the current configuration settings,
ensuring they can verify or modify existing parameters when necessary. Additionally, the
ConfigureAttack method allows users to define attack specifications, while ListConfiguredAttacks
provides a list of all active attack configurations. To retrieve details of a specific attack, clients can use
the GetConfiguredAttack method, which takes an Attackld as input and returns the corresponding
AttackSpecs. Lastly, the DeconfigureAttack method allows for the removal of an attack configuration,
ensuring that outdated or irrelevant attack profiles do not persist in the system.

Each RPC function follows a request-response model, meaning a client sends a request message and
expects a structured response. This approach is particularly useful for gRPC-based microservices,
where real-time communication is essential. The service relies on various Protobuf messages to
facilitate structured data exchange. The Empty message serves as a placeholder for functions that do
not require parameters or return values, similar to an empty JSON object ({}). The ElasticSearch
message defines the configuration for an Elasticsearch database, which the attack detector uses for
storing and querying attack data. It includes a list of hosts, authentication details, and an index name,
ensuring secure and efficient interactions with the database. Similarly, the Kafka message encapsulates
settings for Kafka-based event streaming, including broker hosts, authentication credentials, consumer
group identifiers, and topic names for sending and receiving messages. This configuration enables the
attack detector to process real-time threat intelligence streams efficiently.

The DetectorConfig message acts as a central configuration entity, combining Elasticsearch and Kafka
settings with a minimum machine learning confidence level. This confidence level determines the
threshold at which the system considers a potential attack to be valid, balancing false positives and
false negatives effectively. The attack identification process relies on the Attackld message, which
contains a unique attack UUID and a probability threshold. This allows the system to manage and track
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individual attack instances with a predefined level of certainty. Furthermore, the AttackSpecs message
extends Attackld by introducing an additional parameter: the minimum confidence level for detection.
This ensures that the attack detection model can be fine-tuned to only trigger alerts for high-
confidence threats, reducing noise in the system. To facilitate bulk retrieval of attack configurations,
the ListAttackSpecs message aggregates multiple AttackSpecs entries into a structured list.

The use of Protobuf in this architecture provides several key advantages. Firstly, Protobuf's binary
format ensures efficient serialization, reducing both the size and transmission time of messages
compared to traditional text-based formats. This efficiency is particularly beneficial in network security
and attack detection, where large volumes of streaming data must be processed in real time. Secondly,
Protobuf allows for schema evolution without breaking compatibility. Fields can be added or
deprecated without disrupting existing services, making it easier to introduce new attack detection
parameters as threats evolve. Thirdly, strongly typed structures in Protobuf reduce parsing errors and
improve data integrity, ensuring that attack configurations remain accurate and consistent across
different components of the system.

Furthermore, Protobuf is optimized for gRPC, which enables efficient and secure remote procedure
calls over HTTP/2. This allows the AttackDetector service to scale effectively, leveraging features such
as bidirectional streaming, load balancing, and authentication. The combination of Protobuf, Kafka,
and Elasticsearch in this architecture creates a robust framework for real-time attack detection and
response. By enabling efficient configuration, retrieval, and deconfiguration of attack profiles, this
system ensures that security measures remain adaptive and responsive to emerging threats.

syntax = "proto3";
package attack detector;

service AttackDetector {
rpc ConfigureDetector  (DetectorConfig) returns (  Empty ) {}
rpc GetDetectorConfiguration(Empty )returns (  DetectorConfig) {}
rpc ConfigureAttack (AttackSpecs )returns(  Empty ) {}
rpc ListConfiguredAttacks (Empty )returns (  ListAttackSpecs) {}
rpc GetConfiguredAttack (Attackld )returns(  AttackSpecs ){}
rpc DeconfigureAttack  (Attackld )returns(  Empty ) {}

message Empty {}

message ElasticSearch {
repeated string hosts = 1;
string authentication = 2; // example: "api_key:<APl_KEY>"
string index =3;

}

message Kafka {
repeated string hosts =1;
string authentication =2;// example: "api_key:<APl_KEY>"
string consumer_group_id = 3;
string consumer_topic =4;
string producer_topic =5;

message DetectorConfig {
ElasticSearch elasticsearch = 1;
Kafka kafka =2;
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float min_ml_confidence_level = 3;

}

message Attackld {
string attack_uuid = 1;
float probability_threshold = 2;

}

message AttackSpecs {
Attackld attack_id =1,
float min_confidence_level = 2;

}

message ListAttackSpecs {
repeated AttackSpecs attack_specs_list = 1;
}

3.4.2 Attack Mitigator

RFC 8519, titled "YANG Data Model for Network Access Control Lists (ACLs)," defines a standardized
YANG 1.1 data model for configuring and managing ACLs on network devices. An Access Control List
(ACL) is an ordered set of rules, known as Access Control Entries (ACEs), that determine how packets
are processed based on specific match criteria and corresponding actions. The YANG model provides
a structured and vendor-neutral way to configure ACLs, ensuring interoperability across different
network platforms.

The ACL model is structured as a hierarchical YANG schema that allows network administrators to
define ACLs in a standardized manner. At the top level, the acls container holds multiple ACL
configurations. Each ACL is uniquely identified by a name and a type, which specifies whether it applies
to IPv4, IPv6, or Ethernet traffic.

Within each ACL, the aces container holds a list of Access Control Entries (ACEs). Each ACE contains:

e Aunique name for identification.

e Match conditions that define criteria based on packet headers, organized into:

e Layer 2 (I12): Matches Ethernet fields, such as source and destination MAC addresses.

e Layer 3 (I3): Matches IP packet fields, such as source and destination IP addresses.

e Llayer 4 (l4): Matches transport-layer fields, such as TCP/UDP ports.

e Actions specifying how matching packets should be handled, such as permit, deny, or log.

One of the most critical aspects of the YANG ACL model is its ability to bind ACLs to network interfaces.
The model defines an acl-interfaces structure that enables administrators to attach ACLs to specific
network interfaces, including physical and logical interfaces. This ensures that ACLs can be applied in
a structured and policy-driven manner to control both ingress (incoming) and egress (outgoing) traffic.
The interface attachments can apply to various network devices, such as routers, switches, and
firewalls.

The YANG model supports different types of interfaces where ACLs can be enforced:

e Physical Interfaces — Ethernet, fiber, or any other hardware network interface.

e Logical Interfaces — VLAN interfaces, virtual tunnel interfaces, or sub-interfaces.

e Software-Defined Interfaces — Interfaces used in SDN-based environments where ACL policies
are dynamically enforced.

e By defining ACLs within the YANG model, administrators can programmatically attach them to
these interfaces, ensuring centralized and automated security policies across network
environments.
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The YANG ACL model also includes mechanisms to collect and report statistics. Each ACE can have
associated counters tracking packet matches, drops, and forwarding actions. These statistics allow
administrators to monitor ACL effectiveness, optimize rule sets, and troubleshoot network security
policies efficiently.

The YANG-based ACL model is designed to be extensible, allowing vendors to augment the base model
with additional capabilities. For instance, vendors can introduce custom match conditions, logging
mechanisms, or policy-based ACL configurations while still maintaining compatibility with the standard
model. Additionally, the model includes feature statements that enable devices to advertise the
specific ACL capabilities they support.

3.5 Workflow

The entire architecture of the CLA platform can be seen in Figure 6. The functionality of the CLA
platform begins with the presumption that a connected car has already established a Protocol Data
Unit (PDU) session between itself and the OTA server via the Telecom Network. Then, the user plane
packets from the vertical service (e.g: IP audio calls, music, video-streaming, OTA updates, etc.) are
transmitted from the connected car through the gNB to the UPF located in the Mobile Edge Compute
(MEC). Then, the UPF forwards the data plane packets to the CLA platform. The components in the CLA
platform determine if incoming packets are an attack or not, if the CLA platform determines the
Network is being exposed to a PoD attack, the CLA platform creates the necessary ACL which is sent to
the TFS and finally the ACL is pushed into the Network Element (switch or router or firewall or server)
that will block the malicious packets.
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Figure 6 The specific architecture of SECaas$ platform

Figure 7 illustrates a sequence diagram representing the process of network traffic analysis, attack
detection, and mitigation using Elasticsearch, Kafka, Al inference, and multiple security components.
The process begins with Traffic Sniffer capturing network flows and writing them into an Elasticsearch
database. This step ensures that network data is logged and stored for further processing. Once the
network flow is created and written, the Traffic Sniffer publishes the document ID of the network flow
to Kafka, a real-time event streaming platform. This enables subsequent components in the pipeline
to access and analyze the network data efficiently.
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Following this, the Al Inference module extracts the document ID of the network flow from Kafka and
processes it to determine the probability of an attack. Once the inference process is completed, the Al
system publishes the attack probability back to Kafka, making it available for Attack Detector to
retrieve. The Attack Detector listens to Kafka for incoming probabilities and assesses the likelihood of
an attack occurring. If a potential attack is detected, the Attack Mitigator takes action by publishing
the necessary information to create an Access Control List (ACL). This ACL is intended to restrict or
control access to affected network entities based on the detected attack patterns.

The Attack Mitigator listens to Kafka for further information required to generate the ACL in JSON
format. Once all required data is gathered, the TFS (presumably a security enforcement or traffic
filtering system) creates and pushes the ACL. The final step involves TFS pushing the ACL into the
Device, ensuring that security policies are enforced at the endpoint level. This process establishes a
closed-loop security framework, where threats are detected, evaluated, and mitigated in an
automated manner.
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pull the network flow.

publish Attack Probability.
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Figure 7 Sequence diagram

3.6 Preliminary experimental validation of the functionalities

Upon running the evaluation of the CLA platform, the results are shown below, The Traffic Sniffer
publishes into Kafka the document id of the network flow it creates as can be seen in Figure 8.
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Figure 8 Creating network flows and publishing into Kafka
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The NBI is used to extract network flows from the Elasticsearch database as shown in Figure 9.

Figure 9 Extract Network Flow from Traffic Sniffer

The next step in the CLA process is the Al inference which extracts network flow from elasticsearch
and calculates the probability of it being a PoD attack using the Random Forest Classifier machine
learning algorithm, this demonstration can be seen in Figure 10. The calculated probability is published
as a message is published in Kafka.

bf _death probability of: 0.04, has a mail spam probability of 0"}

"message”: "The flow with ID: 7 has a DoS attack probability of: 0, has a Ping_
bf _death probability of: 0.04, has a mail spam probability of 0"}

"message": "The flow with ID: 8 has a DoS attack probability of: 0, has a Ping_
bf _death probability of: 0.18, has a mail spam probability of 0"}

"message”: "The flow with ID: 9 has a DoS attack probability of: ©, has a Ping_
bf _death probability of: 0.04, has a mail spam probability of 0"}

"message"”: "The flow with ID: 10 has a DoS attack probability of: 0, has a Ping
of _death probability of: 0.04, has a mail spam probability of 0"}

Figure 10 Al Inference message

The Attack-Detector steps in and is configured remotely if the probability published by the Al-Inference
is an attack or not, this is seen in Figure 11.

Consumer: attack-details

f... ...

{"Attack Type": "Ping_of _Death", "Timestamp": "2024-07-28T15:13:19.631319", "det
ails": {"doc_id": 8, "source_port": 44790, "destination_ip": "104.16.100.215", "
destination_port": 443, "protocol"”: 6, "document_timestamp"”: "2024-07-28T17:13:1
2.866307"

Figure 11 Attack Details Message

The user can set a threshold limit dynamically such that any probability value above the threshold is
classified as an attack and published as an attack in Kafka, this can be seen in Figure 12.
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on3 client.py

Enter min_ml confidence level (& to 1): 0.8

= ConfigureDetector response:
GetDetectorConfiguration response: elasticsearch {
= hosts: "localhost:9288"

P authentication: "api_key:dummy"

" index: "network-flows"

}

kafka {

hosts: "localhost:9692"
authentication: "api key:dummy"”
consumer_group_id: "groupl”
consumer_topic: "probability-flows"
producer_topic: "attack-details"”

1

min_ml_confidence_level: 0.8

Figure 12 Attack Detector Configuration

The next step is for the Attack-Mitigator to create the ACL and post it into the TFS controller, which
can be seen below in Figure 13 and Figure 14.

“ C O D locathost o ® @ a

ETSI TeraFlowSDN Controller
Select the desired Context/Topology
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Figure 13 TFS Web Ul
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Figure 14 POST ACL into TFS
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4 Use case 2 proof-of-concept (PoC)

4.1 Phase 1: PoC at Nextcloud

To carry out phase 1 testing, a test setup has been provided where the entire team can work on the
same devices. This has the following advantages.

The acquisition of vehicular data requires tools to facilitate development work. For this, logs were
created from the data provided by the sensors, which we called Datasets. These corresponded to the
acquired analog values along with their respective timestamps. Figure 15 shows the distinction
between the actual implemented architecture and the development architecture.

Remote Collaboration: Developers can access hardware from anywhere in the world, allowing them
to work on the project regardless of their physical location.

Reduced operational costs: Only one set of hardware is needed, which can be shared by all developers.
This reduces the costs of purchasing multiple devices for each team member.

More efficient testing: Hardware can be accessed 24/7, allowing for continuous testing and debugging,
even when developers are in different time zones.

Ease of maintenance and updating: Updates to the operating system or applications built for the
project can be performed centrally and instantly available to all developers.

Scalability: If more developers need to work on a project, access to hardware can be easily scaled
without the need to purchase more physical equipment.

Security and Access Control: Security controls can be implemented to restrict access to hardware to
only those who need it, ensuring that sensitive or confidential data is protected.

Virtual private server Test rack

VM1 OBU

'

New SWrelease LwM2M client (Anjay)
FOTA
LWIM2M server l’ flashing
(Leshan) service

> CoAP client
CoAP server
Internet
UDP 5685

Figure 15: UC2 phase 1: development architecture
4.1.1 On-board unit test setup

The on-board unit (OBU) developed, called VMAYX, is based on an aarch64 architecture, as opposed to
the PCs used for development, which is based on the X86-64 architecture.

vmaxsetup@vmax:~ § ssh -oHostKeyAlgorithms=+ssh-rsa root@i92.168.2.4

root@l92.168.2.4"s password:

~ # uname -a

Linux ag2i5scnaa 4.14.206-perf #1 SMP PREEMPT Tue Dec 12 09:58:25 UTC 2023
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This means our code must undergo a process known as cross-compilation, which involves compiling a
software project on a machine with one architecture, in this case, X86-64, so that it can run on a
machine with a different architecture. For this reason, a test setup is necessary for the cross-compiled
code. This setup consists of a Raspberry Pi connected to two device units equipped with a C-V2X PC5
interface for radio communications, linked via an Ethernet switch (see Figure 16). The Raspberry Pi is
accessible over the Internet through a TLS reverse tunnel to a dedicated server managed by IDNEO,
and from there, access to the VMAX units is provided via serial and/or local network interfaces.

Alternatively, the setup also allows access to the VMAX units through a Uu cellular connection, either

via access permissions granted to the public IP of the IDNEO dedicated server or through other
permanent TLS reverse tunnels.
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1 1 - 1
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Figure 16: Test setup

In Figure 16, it is possible to identify the access interfaces that allow remote control of the Vmax. The
control that this setup allows with respect to each Vmax, goes from turning it on or off, through a
network-managed power source or serial interfaces that allow debugging from the Vmax boot start-
up from the Raspberry PI.

4.1.2 TLS Reverse Tunnel

This tunnel allows to create a permanent connection between the Raspberry Pi, which is located
behind a local network, and the IDNEO server. To run this tunnel, the openssl TLS client is used in
reverse forwarding mode, which establishes a port on the remote host and redirects it locally to the
Raspberry Pi TLS server. To do this, a systemd service is created that executes the corresponding
command and manages the recovering process.
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* backdoor.service - Backdoor Service
Loaded: loaded (/etc/systemd/system/backdoor.service; enabled; preset: enabled)
Active: active (running) since Thu 2024-10-10 15:34:38 CEST; 6min ago
Until: Thu 2024-10-10 18:34:38 CEST; 2h 53min left
Main PID: 28106 (bash)
Tasks: 2 (limit: 8734)
CPU: 136ms

CGroup: [system.slice/backdoor.service
|-28106 /bin/bash fusr/bin/backdoor.sh
"-28108 [usr/bin/ssh -N -R 35990:localhost:22 ficosa-root@193.70.33.60 -p 2702:

=l
Q
M
M

oct 10 15:34:38 vmax systemd[1]: Started backdoor.service - Backdoor Service.
oct 10 15:34:38 vmax bash[28106]: New port: 35990

Onthe IDNEO server side, this TLS client has automatic access because the public key of the client host,
Raspberry Pi, is in the list of authorized keys on the TLS server, so no user and password authentication
is needed.

4.1.3 Firewall on the on-board unit

The iptables architecture relies on these three components working together:

e Tables: Organize rules by function (e.g., filtering, mangling).

e Chains: Define the path packets take and the order in which rules are applied.

e Rules: Specify the criteria for matching packets and the actions to take (e.g., ACCEPT, DROP,
REJECT).

The filter table is the default table used to filter packets. Its rules determine whether a packet should
be accepted or rejected. This table contains the core chains used for traffic management: INPUT,
OUTPUT, and FORWARD.

INPUT: This chain handles incoming traffic destined for the local system itself. When a packet arrives
at a network interface and is intended for the device, it is processed by the rules within the INPUT
chain.

OUTPUT: This chain handles outgoing traffic originating from the local system. Any packets generated
by the device and sent out through a network interface are processed by the rules in the OUTPUT
chain.

FORWARD: This chain handles traffic that is neither destined for nor originating from the local system.
It is used for packets that are being routed or forwarded to other networks or machines. This chain is
essential for devices acting as routers or gateways.
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In the OBU, restrictive input rules have been configured, which are automatically configured at system
startup. OBUs have access to the public network through the Quectel AG550 modem. In this modem,
incoming and outgoing traffic rules are configured for network management. By configuring the INPUT
and OUTPUT chains to discard unauthorized traffic and the FORWARDING chain to only allow access
to port 22 (TLS server of the AG215 AP) to certain configured public IP addresses, a filter is achieved
for all traffic that is not allowed access.

/ # iptables -L -t filter
Chain INPUT (policy DROP)

target prot opt source destination
ACCEPT icmp -- anywhere anywhere

ACCEPT all -- anywhere anywhere

ACCEPT all -- 192.168.225.0f30 192.168.225.0/30

Chain FORWARD (policy ACCEPT)
target prot opt source destination
f 193.70.33.60 anywhere tcp dpt:ssh

88.98.97.234 anywhere tcp dpt:ssh
46.136.172.101 tcp dpt:ssh
DROP tcp -- anywhere anywhere tcp dpt:ssh
Chain OUTPUT (policy DROP)
target prot opt source destination
ACCEPT icmp -- anywhere anywhere
ACCEPT all -- anywhere anywhere
ACCEPT all -- 192.168.225.0/30 192.168.225.0/30

This configuration allows to avoid brute force attacks since the TLS server will only serve the clients
that the iptables rules allow.

4.2 Phase 2: PoC at Castelloli

To deploy phase 2 of the tests, all software, both server-side and OBU software, has been migrated to
their final locations: the Castelloli server and the IDNEO-developed OBU installed in the test vehicle.
Figure 17 details the phase 2 architecture.
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Figure 17: UC2 phase 2: real architecture (Castelloli)

This tool simplifies development to the extent that accessing the vehicle for algorithm testing was no
longer necessary, as real values were used for testing, albeit with different timestamps.
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5 Conclusions

Ensuring the security of OTA vehicular software updates is essential to protect vehicles from cyber
threats and unauthorized modifications. The SUCCESS-6G-DEVISE framework demonstrates the
effectiveness of Al-driven security policies, network slicing, and SECaa$ in mitigating risks associated
with OTA updates. The validation results show a significant reduction in security vulnerabilities,
enhancing overall trust in the software update process. As cybersecurity threats continue to evolve,
ongoing research into Al-driven threat detection, blockchain-based verification, and real-time anomaly
monitoring will be critical in maintaining the integrity and resilience of vehicular software updates.

One of the key challenges in secure OTA updates is maintaining end-to-end encryption while
minimizing performance trade-offs. The use of blockchain-based verification techniques ensures that
software packages remain tamper-proof throughout the update process. By leveraging distributed
ledger technology, updates can be validated across multiple nodes, reducing the risk of data breaches
and unauthorized alterations.

Additionally, integrating Al-driven threat detection mechanisms enhances the real-time security
posture of the OTA ecosystem. By continuously monitoring network activity and analyzing behavioral
anomalies, the system can proactively identify and mitigate potential cyber threats. Future
advancements should focus on expanding adaptive security frameworks that dynamically respond to
emerging attack vectors, ensuring robust protection against evolving cyber risks.
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