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Executive Summary 

Security remains a paramount concern in the deployment of over-the-air (OTA) software updates, as 
vulnerabilities in vehicle software can expose systems to cyber threats. SUCCESS-6G-DEVISE introduces 
a security-first approach by integrating Security as a Service (SECaaS), AI-enhanced threat detection, 
and blockchain-based integrity verification. These mechanisms ensure that software updates are 
authenticated, encrypted, and delivered securely, preventing unauthorized modifications and 
cyberattacks. Experimental results on the ADRENALINE testbed demonstrate enhanced security 
enforcement, reduced threat detection times, and improved compliance with cybersecurity standards. 
The adoption of AI-driven security policies and network slicing for isolated update distribution solidifies 
SUCCESS-6G-DEVISE as a robust framework for secure vehicular software updates. 

 

 

 

 

 

 

 



Version 1.0, 30/04/2025 

SUCCESS-6G: DEVISE  Page 4 of 31 TSI-063000-2021-40 

Table of Contents 

Executive Summary ...................................................................................................................... 3 

Table of Contents ......................................................................................................................... 4 

List of Figures ............................................................................................................................... 5 

1 Introduction ................................................................................................................... 6 

2 Use case 2: Automated software updates for vehicles ..................................................... 7 

2.1 General description and overall objectives ..............................................................................7 

2.2 User story 2.2: Over-the-air vehicular software updates with security guarantees ................8 

2.3 Overall UC2 architecture and network deployments ...............................................................8 

2.4 Facilities for Use Case 2: ADRENALINE Testbed .......................................................................9 

3 Over-the-air vehicular software updates with security guarantees: Implementation at the 
ADRENALINE testbed .................................................................................................... 11 

3.1 Security as a Service ............................................................................................................... 11 

3.2 Requirements and KPIs .......................................................................................................... 12 

3.2.1 Requirements ................................................................................................................ 12 

3.2.2 Key Performance Indicators (KPIs) ................................................................................ 13 

3.3 UC2 Architecture and network deployment.......................................................................... 14 

3.4 Exposed interfaces ................................................................................................................. 16 

3.4.1 Attack Detector ............................................................................................................. 16 

3.4.2 Attack Mitigator ............................................................................................................. 18 

3.5 Workflow ............................................................................................................................... 19 

3.6 Preliminary experimental validation of the functionalities ................................................... 20 

3.7 Final testing and validation .................................................................................................... 23 

4 Use case 2 proof-of-concept (PoC) ................................................................................ 27 

5 Conclusions .................................................................................................................. 30 

6 References ................................................................................................................... 31 

 

 



Version 1.0, 30/04/2025 

SUCCESS-6G: DEVISE  Page 5 of 31 TSI-063000-2021-40 

List of Figures 

Figure 1 Implementation phases for the automated software updates ..................................................7 

Figure 2 Proposed overall UC2 system architecture ................................................................................9 

Figure 3 ADRENALINE testbed to be used for Use Case 2 ..................................................................... 10 

Figure 4 Proposed architecture for OTA vehicular software updates with security guarantees .......... 11 

Figure 5 Instantiation of SUCCESS-6G architecture for OTA vehicular software updates with security 
guarantees ............................................................................................................................................. 15 

Figure 6 Specific architecture of the SECaaS platform .......................................................................... 19 

Figure 7 Sequence diagram ................................................................................................................... 20 

Figure 8 Creating network flows and publishing into Kafka ................................................................. 21 

Figure 9 Extract Network Flow from Traffic Sniffer .............................................................................. 21 

Figure 10 AI Inference message ............................................................................................................ 22 

Figure 11 Attack Details Message ......................................................................................................... 22 

Figure 12 Attack Detector Configuration .............................................................................................. 22 

Figure 13 TFS Web UI ............................................................................................................................ 23 

Figure 14 POST ACL into TFS ................................................................................................................. 23 

Figure 15 The Frequency of the mean time taken to detect an attack ................................................ 24 

Figure 16 Random Forest Classifier Learning Curve .............................................................................. 25 

Figure 17 Cumulative Mean Time taken to detect all attacks on the system ....................................... 25 

Figure 18 Cumulative Mean Time taken to detect all attacks on the system ....................................... 26 

Figure 19 PoC architecture for OTA vehicular software updates at Castelloli ...................................... 27 

Figure 20 LWM2M server deployed on the virtual machine waiting for connections ......................... 27 

Figure 21 Top: Client connected to Server, Bottom: TCU console showing server logs ....................... 28 

Figure 22 TCU and Server interaction, device data observation........................................................... 28 

Figure 23 Top: Software Release configuration for update, Bottom: Software Releases in HTTPS 
repository .............................................................................................................................................. 28 

Figure 24 Top: Software Update User Interface, Bottom: Release Download to the TCU File System 29 

Figure 25 Reboot and automatic reconnection to the LWM2M server ................................................ 29 

Figure 26 TCU offline while performing reboot and update = 3 min 10 s ............................................ 29 

 



Version 1.0, 30/04/2025 

SUCCESS-6G: DEVISE  Page 6 of 31 TSI-063000-2021-40 

1 Introduction 

The increasing reliance on software-driven functionalities in modern vehicles necessitates a robust and 

secure method for delivering over-the-air (OTA) software updates. As connected and autonomous 

vehicle ecosystems continue to evolve, manufacturers and service providers must ensure that 

software updates are not only timely but also protected from cyber threats. Vehicle-to-Everything 

(V2X) communication is a key enabler of this transformation, facilitating seamless and reliable OTA 

updates while incorporating advanced security measures. However, ensuring data integrity, 

preventing unauthorized access, and safeguarding against cyberattacks remain critical challenges. The 

SUCCESS-6G-DEVISE project aims to address these security concerns through the integration of 

Software-Defined Networking (SDN), Security as a Service (SECaaS), and AI-driven threat detection. 

A fundamental requirement for secure OTA software updates is ensuring end-to-end encryption and 

authentication mechanisms to prevent unauthorized modifications. Cellular V2X (C-V2X) technology, 

enabled by 5G and edge computing, enhances secure communication channels by enabling encrypted, 

tamper-proof data exchanges between vehicles and update servers. The SUCCESS-6G-DEVISE 

framework incorporates threat detection to continuously monitor update traffic for anomalies and 

potential cyber threats. Additionally, the use of network slicing ensures that OTA updates are 

transmitted over dedicated, isolated channels to prevent unauthorized interception and manipulation. 

Beyond connectivity, cybersecurity remains a primary concern for OTA software updates. Outdated 

vehicle software is a prime target for cyberattacks, necessitating stringent security protocols to 

authenticate update sources and verify software integrity. SUCCESS-6G-DEVISE integrates Security as 

a Service (SECaaS) mechanisms, incorporating AI-enhanced threat detection, real-time anomaly 

detection, and blockchain-backed update verification. These security measures ensure that only 

authorized updates are deployed, mitigating risks such as firmware tampering, data breaches, and 

ransomware attacks. Efficient security management is another key factor in optimizing OTA software 

updates. MEC-based security processing reduces the computational burden on centralized cloud 

infrastructure by distributing security monitoring and threat mitigation to edge nodes. This allows for 

real-time security assessments, rapid threat response, and proactive risk mitigation. SUCCESS-6G-

DEVISE employs threat prediction models to dynamically adjust security policies based on evolving 

cyber threats, vehicle density, and update criticality. By leveraging federated learning and distributed 

intelligence, the system ensures proactive security enforcement while minimizing processing delays. 

This deliverable presents results on the implementation and validation of secure OTA software updates 

within a V2X connectivity framework. Experimental evaluations conducted on the ADRENALINE 

testbed demonstrate significant improvements in security enforcement, threat mitigation efficiency, 

and update integrity verification. The integration of SDN, SECaaS, and AI-driven security mechanisms 

has resulted in a scalable and adaptive solution capable of addressing the evolving cybersecurity 

demands of connected vehicle ecosystems. The findings from this research highlight the potential of 

SUCCESS-6G-DEVISE in revolutionizing vehicular software update security methodologies. By 

leveraging cutting-edge networking and security technologies, the proposed framework ensures that 

vehicles remain protected against cyber threats while maintaining seamless software update 

deployment. As the automotive industry continues to transition towards fully connected and 

autonomous systems, the implementation of secure and efficient OTA update mechanisms will be 

instrumental in enhancing vehicle safety, data protection, and regulatory compliance. 

The subsequent sections present the specific methodologies employed, experimental setup, and 

detailed performance evaluations of the proposed secure OTA update system, providing a 

comprehensive analysis of its benefits and potential industry applications. 
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2 Use case 2: Automated software updates for vehicles  

2.1 General description and overall objectives  

Over-the-air software updates are delivered remotely from a cloud-based server, through a cellular 
connection, to the connected vehicle with the aim of providing new features and updates to the 
vehicle’s software systems. Such software updates may include changes to any software that controls 
the vehicle’s physical parts or electronic signal processing system. In practice, the updates often tend 
to apply more to user interfaces like infotainment screens and navigation (i.e., vehicle maps). The 
update procedure, when performed over the air, enables a vehicle’s performance and features to be 
continuously up-to-date and improved. The integration of advanced data analytics, automated and 
remote service delivery eliminates the need for visiting repair/service centres, while technological 
advancements in these updates give vehicle manufacturers the freedom to constantly “freshen up” 
finished products remotely. C-V2X technology plays a crucial role in the update process, enabling 
efficient, scalable, and seamless wireless communication between vehicles and software management 
platforms. Figure 1 illustrates the implementation phases for this use case. 

 

 
Figure 1 Implementation phases for the automated software updates 

The overall objectives of this use case can be summarized as follows: 

• Safer and more entertaining driving experience. 

• Hardware and software components maintained and updated regularly during a vehicle’s 
lifespan, implying a slower rate of depreciation. 

• Prevention of cyberattacks targeting outdated software. 

• Compliance to new rules and standards. 

• Lower repair costs and elimination of labour charges. 

• Lower warranty costs for manufacturers and lower downtime for customers 

The key stakeholders involved in the use case are: 

• The Mobile Network Operator (MNO), providing wireless connectivity between the vehicle, 
the edge computing infrastructure, and the vehicular software management system. The MNO 
is interested in optimizing the network operation by enhancing its energy efficiency and 
coverage, while offering novel services to accommodate more users. 

• The edge infrastructure provider, offering and managing computational resources at the edge 
and supporting real-time services as well as virtualized network functions and AI-empowered 
algorithms for advanced computational tasks.  

• The equipment provider, providing in-vehicle embedded devices, e.g., hardware components 

and sensor devices, that can be remotely reconfigured and updated. 

• The vehicular software management system, operated by the equipment provider or vehicle 

manufacturer, is responsible for issuing periodically new software updates. 

• The software developers, devising and applying data-processing modules for automated 

update of vehicular components’ software. 

• The cloud providers can optionally be involved, offering additional computational resources 

to host the service. 

Note that, without loss of generality, some stakeholders may assume multiple roles or, equally, some 

roles may be assumed by multiple stakeholders. For instance, the MNO could also be the owner of the 
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edge infrastructure, or an equipment provider may also be responsible for the operation of the 

vehicular software management system or outsource it to a third party. 

2.2 User story 2.2: Over-the-air vehicular software updates with security 
guarantees 

Over-the-air software updates deliver critical information to onboard vehicular devices. As vehicles 
introduce new functionalities (such as advanced driver-assist features like self-parking) and the 
number of connected vehicles keeps growing, automakers need to handle the regular software 
updates required in a secure and trustworthy way. Thus, the integration of intelligent security 
enforcement solutions and effective prediction/mitigation of security threats is deemed essential for 
the secure operation of the OTA update service and to preserve trustworthiness. Additionally, by 
instantiating virtual security functions and by exploiting secure edge provisioning empowered by AI-
driven capabilities, the threat risk for software updates can be further minimized. 

2.3 Overall UC2 architecture and network deployments 

The elaboration of Figure 2 details a system architecture specifically designed for OTA software 
updates, integral to the SUCCESS-6G framework. This architecture addresses the complex 
requirements of Use Case 2. Figure 2 Proposed overall UC2 system architectureprovides a high-level 
system architecture for OTA vehicular software updates within a robust V2X connectivity framework, 
leveraging ETSI TeraFlowSDN for network automation and control. The figure illustrates the key 
components enabling software update dissemination to connected vehicles via 5G mobile edge 
computing (MEC) nodes. 

At the core of this system is the ETSI TeraFlowSDN Controller, which manages the network 
infrastructure, including the gNBs (5G base stations) and Transport Network. The NFV Orchestrator 
(NFV-O) enables dynamic deployment and scaling of virtualized network functions, such as Distributed 
User Plane Functions (D-UPF) within MEC nodes. 

Each edge node (Edge Node 1 & Edge Node 2) hosts a Software Update Server, responsible for caching 
and distributing updates to C-V2X On-Board Units (OBU) in connected vehicles. These updates are 
delivered via the 5G network, passing through the transport network, controlled by the TeraFlowSDN 
controller. 

To ensure security and integrity, the system integrates a Security-as-a-Service module, providing 
firewall protection and secure communications for software updates. The updates originate from local 
cloud infrastructure, which includes 5G Core Control Plane components such as SMF (Session 
Management Function), AMF (Access and Mobility Management Function), and UPF (User Plane 
Function). 

The software update client within the vehicle's C-V2X OBU interacts with the Software Update Servers 
over the network, ensuring efficient and timely delivery of critical updates for vehicle applications. 
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Figure 2 Proposed overall UC2 system architecture 

 

This architecture highlights the interplay between 5G, MEC, SDN, and V2X technologies to facilitate 
secure and efficient OTA software updates, enabling reliable vehicle connectivity and automation. 

2.4 Facilities for Use Case 2: ADRENALINE Testbed 

The ADRENALINE testbed® is an open and disaggregated SDN/NFV-enabled packet/optical transport 
network and edge/core cloud infrastructure for 6G, IoT/V2X and AI/ML services, constantly evolving 
since its creation in 2002, and reproducing operators’ networks from an End to End (E2E) perspective 
and Data Centre Interconnect (DCI). The figure below summarizes the networking scenario of 
ADRENALINE testbed, to be used for the execution of SUCCESS-6G.  
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Figure 3 ADRENALINE testbed to be used for Use Case 2 

ADRENALINE spans the access, aggregation-metro and core segments, and includes distributed Data 
Centres (DCs) geographically disperse and located at the edge or in central locations. As depicted in 
the figure, the key elements are: (1) an SDN-controlled optical network (flexi-grid DWDM photonic 
mesh), with 4 ROADM nodes and over 600km of amplified DWDM links. Currently, all the links of the 
mesh are based on amplified C-band transmission, but one of them also supports amplified flexible L-
band transmission; (2) packet-optical nodes with optical pluggable transceivers, providing aggregated 
400G data rates (muxponders) for transporting traffic flows between the access networks and the core 
central offices or data centers; (3) programmable SDN-enabled S-BVTs able to transmit multiple flows 
at variable data rate/reach up to 1 Tb/s; (4) a Packet Access Network (PAN) connected to the metro 
infrastructure with IP Cell Site Gateways (CSGs); (5) a PON tree formed by disaggregated Optical 
Network Terminals (ONTs), offering connectivity to several Customer Premises Equipment (CPEs). 
ADRENALINE also includes a Portable 5G RAN platform for testing and validation of 5G and beyond use 
cases. The different access networks (i.e., PON) and the photonic mesh are managed by dedicated 
orchestrators and controllers (e.g., CTTC FlexOpt Optical Controller) to automatically handle the 
connectivity services entailing the de-/allocation of heterogeneous network resources (i.e., packet and 
optical devices). The domain-specific controllers and orchestrators are coordinated hierarchically by 
the ETSI TeraFlowSDN controller, which exposes a North Bound Interface to allow interaction of 
resources to request network connectivity services. This service platform orchestrates the transport 
(optical/packet) and computing:  

i) Multi-VIM (virtualized infrastructure managers) combining OpenStack and K8s controllers 
for virtual machines and containers;  

ii) TeraFlowSDN controller for E2E connectivity among virtual machines, containers, and end-
points. The service platform is also in charge of managing the life-cycle of network services 
and network slices: i) a network service is composed of chained NFs;  

iii) a network slice is composed of one or several concatenated network services that deploy 
a set of NFs.  
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3 Over-the-air vehicular software updates with security guarantees: 
Implementation at the ADRENALINE testbed 

3.1 Security as a Service 

Figure 4 illustrates a sophisticated network architecture designed for service management through 
Software Defined Networking (SDN) and Network Function Virtualization (NFV) technologies. At the 
apex of this architecture is the API (NBI), the Northbound Interface, which functions as a pivotal point 
of access for service management, facilitating communication between the service management layers 
and the underlying network infrastructure. 

 

Figure 4 Proposed architecture for OTA vehicular software updates with security guarantees 

Central to this architecture is the Security as a Service component. It includes a Slice Manager, a 
component that manages network slices—distinct segments of the network tailored for specific 
operational requirements, each with its own set of performance parameters and policies. This 
management is intricately connected to the SSLA & Policies Mapper, which translates service level 
agreements and policies into practical, enforceable rules for each network slice. 

These slices are cataloged in the Slice DB (Abstracted Domain Resources), a comprehensive repository 
that maintains details about network slices and their corresponding resources. The Orchestrator 
operates in concert with the Slice DB, orchestrating the deployment and lifecycle of network services 
across various network segments. 

The Provider Mapper (SBI), or the Southbound Interface, communicates with physical and virtual 
network functions, translating the orchestrated service management directives into actionable tasks 
within the network fabric. This includes the NFV Orchestrator (NFV-O), which is responsible for the 
overall management of virtualized network functions, ensuring their proper instantiation, scaling, and 
termination. 

At the foundation of the network control plane is the Transport SDN controller, which governs data 
plane devices such as routers and switches, enabling efficient and dynamic routing of traffic within the 
network. 

The infrastructure components, including vehicles, cellular towers, and data centers, are depicted at 
the bottom of the figure, highlighting the endpoints of this network architecture. These components 
represent the tangible elements where data and services are consumed and delivered, completing the 
ecosystem of this advanced network architecture. 
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3.2 Requirements and KPIs 

The rapid evolution of connected vehicle technology has heightened the need for stringent security, 
reliability, and performance standards. As modern vehicles increasingly depend on software to manage 
critical functionalities—ranging from engine control and braking systems to autonomous navigation—
ensuring robust mechanisms for software updates and network management is paramount. To 
address these concerns, this section outlines the key requirements that safeguard automotive 
software ecosystems against a broad spectrum of cyber threats while maintaining operational 
efficiency. 

Each requirement detailed in the following subsections underscores a unique aspect of secure and 
reliable software lifecycle management. From Secure Software Update Management that focuses on 
authentication, authorization, and integrity checks, to Security as a Service (SECaaS) offering scalable 
and automated policy enforcement, these requirements collectively establish a comprehensive 
defense strategy. Further, Software-Defined Networking (SDN) & Network Function Virtualization 
(NFV) Integration and Slice-Based Service Management enable agile, resource-efficient network 
operations tailored to the varying needs of different vehicles and update types. Finally, Northbound 
and Southbound Interface Support ensures seamless interoperability across multiple platforms and 
vendors, facilitating smooth update distribution and real-time monitoring. 

Together, these requirements form a holistic framework designed to protect and enhance the 
software-driven functionalities of connected vehicles. By emphasizing security, scalability, and 
interoperability, they serve as the foundational building blocks for maintaining trust, minimizing risks, 
and supporting the advanced features of next-generation automotive systems. 

3.2.1 Requirements 

3.2.1.1 Secure Software Update Management 

Ensuring that software updates are securely distributed is critical to preventing unauthorized 
modifications, malware insertion, or other cybersecurity threats. The system must authenticate and 
authorize update sources before distribution, verifying the integrity and authenticity of software 
packages before deployment to vehicles. This process helps mitigate security risks associated with 
malicious attacks or accidental corruption of updates, ensuring that only trusted software is installed 
on connected vehicles. 

The rationale behind this requirement is to enhance the safety and reliability of vehicular software 
systems. Modern vehicles rely heavily on software to control essential functionalities, including 
braking, navigation, and autonomous driving. Any compromise in the update process could lead to 
severe security breaches or operational failures. By implementing stringent authentication 
mechanisms and encryption methods, the system can maintain trust in over-the-air updates while 
complying with automotive cybersecurity standards. 

3.2.1.2 Security as a Service (SECaaS) 

The security framework should be designed as a scalable and adaptable service that automates 
security policy enforcement across different network slices. This ensures a consistent security posture 
while accommodating various levels of security requirements based on the specific needs of each 
vehicle or update type. Security policies should be dynamically adjustable to respond to evolving cyber 
threats and regulatory requirements without requiring significant infrastructure changes. 

The rationale for integrating Security as a Service is to provide a centralized and efficient approach to 
managing security controls across multiple network domains. Instead of applying security 
configurations manually to individual network components, SECaaS enables automation, monitoring, 
and policy enforcement in a streamlined manner. This approach reduces operational overhead, 
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improves compliance with cybersecurity regulations, and enhances the ability to respond quickly to 
emerging threats in the automotive ecosystem. 

3.2.1.3 Software-Defined Networking (SDN) & Network Function Virtualization (NFV) Integration 

The system must leverage SDN and NFV to optimize network resource allocation, enhance scalability, 
and ensure efficient update distribution. SDN enables centralized network control, while NFV provides 
flexible network functions that can be deployed dynamically as needed. Together, these technologies 
support real-time monitoring and adaptation of network conditions, ensuring that software updates 
reach their intended destinations with minimal latency and high reliability. 

The rationale behind integrating SDN and NFV is to address the growing complexity of vehicular 
networks, where software updates must be transmitted efficiently over heterogeneous network 
infrastructures. By decoupling network control and function deployment from traditional hardware 
dependencies, SDN and NFV enable more agile, responsive, and cost-effective network management. 
This improves update delivery speeds and enhances the resilience of the network infrastructure, 
preventing bottlenecks and service disruptions. 

3.2.1.4 Slice-Based Service Management 

Network slicing must be implemented to create isolated virtual networks tailored to different 
operational needs. Each slice should be assigned specific security policies and Quality of Service (QoS) 
parameters to ensure that critical updates receive the highest priority. The slice database should store 
metadata about network slices, facilitating efficient resource allocation and policy enforcement. 

The rationale for using network slicing is to ensure that essential updates, such as security patches or 
firmware upgrades, are delivered with guaranteed performance and minimal risk of interference. 
Vehicles operating in different regions or under varying network conditions may have different 
connectivity requirements. Slicing enables customized resource allocation, allowing for differentiated 
services while maintaining strong security and performance guarantees. 

3.2.1.5 Northbound and Southbound Interface Support 

The system must expose well-defined interfaces for seamless integration with external platforms. The 
Northbound Interface (NBI) should facilitate communication with service management applications, 
while the Southbound Interface (SBI) should interact with physical and virtual network functions. These 
interfaces should support standardized protocols to ensure compatibility across different vendors and 
infrastructure providers. 

The rationale for exposing standardized interfaces is to promote interoperability and simplify 
integration with third-party applications, including automotive manufacturers, cybersecurity 
monitoring tools, and cloud-based orchestration platforms. By enabling flexible API interactions, the 
system can support automated update workflows, real-time security monitoring, and policy-driven 
update deployments, enhancing the overall efficiency of over-the-air update management. 

3.2.2 Key Performance Indicators (KPIs) 

3.2.2.1 End-to-end encryption success rate (%) 

This KPI measures the effectiveness of encryption mechanisms in securing data transmission by 
assessing the percentage of successful encrypted transmissions without breaches. 

Encryption is crucial for ensuring the confidentiality and integrity of software updates during 
transmission. A high success rate indicates a robust security framework, reducing the risk of data 
tampering or interception by malicious actors. 

Target Value: At least 99.9% of transmitted updates should be successfully encrypted without any 
detected breaches. 
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3.2.2.2 Software update delivery latency (ms) 

This KPI measures the time taken for an update to reach its destination from the source. 

Low latency is essential for delivering time-sensitive security patches and feature updates to vehicles. 
Delays in updates could leave vehicles vulnerable to exploits or operational inefficiencies. 

Target Value: The system should deliver critical updates within 500 ms in optimal network conditions. 

3.2.2.3 SLA compliance rate (% adherence to defined policies) 

This KPI evaluates how well the system adheres to predefined service level agreements (SLAs) 
regarding security, reliability, and performance. 

Ensuring SLA compliance helps maintain trust with stakeholders and guarantees that vehicles receive 
updates as promised within set parameters. 

Target Value: At least 98% adherence to SLAs across all update transactions. 

3.2.2.4 Mean Time to Detect (MTTD) 

MTTD is the time elapsed from the moment a security threat or attack occurs to the point where it is 
successfully detected by the security system. It represents the efficiency of threat detection 
mechanisms, including AI-driven inference models, log monitoring, and real-time anomaly detection. 

Importance: A lower MTTD is critical for early threat identification, reducing the window of exposure 
and limiting potential damage. Faster detection enables security teams to respond proactively before 
an attacker can exploit vulnerabilities. Optimizing MTTD is particularly important in cloud-native 
environments, 5G networks, and real-time cybersecurity frameworks, where high-speed attack 
detection is required to protect critical infrastructure and services. 

Target Values/Thresholds: Ideal: Less than 1 minute for AI-enhanced cybersecurity systems with real-
time monitoring. Acceptable: Between 5–10 minutes in standard SOC (Security Operations Center) 
environments with human-assisted analysis. Critical Risk: Above 30 minutes, as this increases the 
likelihood of widespread damage, extended data breaches, and regulatory non-compliance. 

3.2.2.5 Mean Time to Respond (MTTR) 

MTTR is the time elapsed from the moment a security threat is detected to the complete mitigation or 
resolution of the issue. It includes incident triage, threat analysis, containment, mitigation, system 
restoration, and validation to ensure the threat has been neutralized. 

Importance: A lower MTTR reduces the impact of cyberattacks by minimizing system downtime, data 
breaches, and business disruptions. In environments like telco networks, IoT ecosystems, and cloud-
native microservices, rapid response ensures business continuity and compliance with cybersecurity 
policies. Automated orchestration and AI-driven remediation significantly improve MTTR by enabling 
real-time threat containment and recovery. 

Target Values/Thresholds: Ideal: Under 5 minutes for automated threat response mechanisms (e.g., 
SDN-controlled ACL updates, automated patching). Acceptable: 30–60 minutes in cases where manual 
intervention or forensic analysis is required. Critical Risk: Above 2 hours, as prolonged response times 
increase financial losses, system disruptions, and potential data exfiltration risks. 

3.3 UC2 Architecture and network deployment 

Figure 5 illustrates a comprehensive architecture for enabling software updates in a Cellular Vehicle-
to-Everything (C-V2X) environment using 5G, Multi-access Edge Computing (MEC), Network Function 
Virtualization (NFV), and Software-Defined Networking (SDN). The system is structured into multiple 
layers to ensure efficient data processing, low-latency communication, and secure software updates 
for in-vehicle systems. These layers include the Orchestration Layer, 5G Core Control Plane (Local 
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Cloud), MEC Layer (Edge Nodes), Network Infrastructure Layer, and In-Vehicle Layer. Among these, the 
dark blue elements play a crucial role in orchestrating network functions, ensuring security, and 
enabling seamless data transmission. 

 

Figure 5 Instantiation of SUCCESS-6G architecture for OTA vehicular software updates with security guarantees 

At the top of the architecture, the Orchestration Layer is responsible for managing the deployment 
and lifecycle of network functions using NFV and SDN technologies. The NFV Orchestrator (NFV-O) 
oversees the instantiation, scaling, and management of Distributed User Plane Functions (D-UPFs), 
which are deployed closer to the edge to reduce latency. Alongside NFV-O, the End-to-End SDN 
Controller provides centralized control over the transport network, ensuring efficient data routing and 
dynamic policy enforcement. This integration of NFV and SDN allows for adaptive network resource 
management, dynamic traffic steering, and enhanced service reliability, which are essential for 
delivering real-time software updates to connected vehicles. 

The Multi-access Edge Computing (MEC) layer is a critical part of the architecture, hosting D-UPFs and 
Software Update Servers at edge nodes. The D-UPF (Distributed User Plane Function) is responsible 
for offloading data traffic from the 5G core, allowing localized data processing and reducing 
dependency on central cloud infrastructure. This offloading mechanism enhances the responsiveness 
of V2X applications, including OTA software updates. The Software Update Servers deployed at the 
edge nodes ensure that vehicles receive software patches and security updates efficiently, minimizing 
downtime and optimizing network resource utilization. By leveraging MEC, the system reduces latency, 
improves update delivery speed, and enhances overall network performance. 

To protect the integrity and confidentiality of software updates and vehicular communications, the 
architecture incorporates a Security as a Service framework. This module ensures that all software 
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updates are encrypted, verified, and transmitted securely to prevent cybersecurity threats such as 
man-in-the-middle attacks, data tampering, and unauthorized access. The security framework is tightly 
integrated with the MEC layer and orchestration systems, ensuring continuous threat monitoring, 
anomaly detection, and compliance with cybersecurity policies. By implementing security measures at 
both the orchestration and edge levels, the system guarantees the safety and reliability of C-V2X 
applications. 

At the transport network level, gNBs (Next-Generation Base Stations) facilitate communication 
between vehicles and the edge computing infrastructure. These base stations provide high-speed, low-
latency connectivity to ensure that software update clients in vehicles (C-V2X OBUs) receive real-time 
updates. The transport network is dynamically managed by the E2E SDN controller, which optimizes 
routing paths based on network congestion, traffic demand, and security policies. Within the In-Vehicle 
Layer, the Software Update Client ensures that received updates are properly installed, validated, and 
synchronized with the vehicle's onboard systems. This integration ensures that connected vehicles 
remain updated with the latest firmware, security patches, and feature enhancements without 
requiring physical intervention. 

3.4 Exposed interfaces  

We have developed two different interfaces, dedicated to the attack detector and attack mitigator. 

3.4.1 Attack Detector 

The provided Protobuf definition outlines an AttackDetector service within the "attack_detector" 
package, leveraging proto3, the latest version of the Protobuf syntax. This service is responsible for 
configuring and managing an attack detection system that integrates with Elasticsearch, Kafka, and 
machine learning-based threat detection. 

The AttackDetector service is defined as a gRPC-based service that enables clients to configure and 
retrieve attack detection settings remotely. It consists of six Remote Procedure Call (RPC) methods, 
each of which facilitates specific operations. The ConfigureDetector method allows clients to configure 
the attack detector using a DetectorConfig message, which includes Elasticsearch and Kafka settings 
along with a minimum machine learning confidence level for attack detection. The 
GetDetectorConfiguration method enables clients to retrieve the current configuration settings, 
ensuring they can verify or modify existing parameters when necessary. Additionally, the 
ConfigureAttack method allows users to define attack specifications, while ListConfiguredAttacks 
provides a list of all active attack configurations. To retrieve details of a specific attack, clients can use 
the GetConfiguredAttack method, which takes an AttackId as input and returns the corresponding 
AttackSpecs. Lastly, the DeconfigureAttack method allows for the removal of an attack configuration, 
ensuring that outdated or irrelevant attack profiles do not persist in the system. 

Each RPC function follows a request-response model, meaning a client sends a request message and 
expects a structured response. This approach is particularly useful for gRPC-based microservices, 
where real-time communication is essential. The service relies on various Protobuf messages to 
facilitate structured data exchange. The Empty message serves as a placeholder for functions that do 
not require parameters or return values, similar to an empty JSON object ({}). The ElasticSearch 
message defines the configuration for an Elasticsearch database, which the attack detector uses for 
storing and querying attack data. It includes a list of hosts, authentication details, and an index name, 
ensuring secure and efficient interactions with the database. Similarly, the Kafka message encapsulates 
settings for Kafka-based event streaming, including broker hosts, authentication credentials, consumer 
group identifiers, and topic names for sending and receiving messages. This configuration enables the 
attack detector to process real-time threat intelligence streams efficiently. 

The DetectorConfig message acts as a central configuration entity, combining Elasticsearch and Kafka 
settings with a minimum machine learning confidence level. This confidence level determines the 
threshold at which the system considers a potential attack to be valid, balancing false positives and 
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false negatives effectively. The attack identification process relies on the AttackId message, which 
contains a unique attack UUID and a probability threshold. This allows the system to manage and track 
individual attack instances with a predefined level of certainty. Furthermore, the AttackSpecs message 
extends AttackId by introducing an additional parameter: the minimum confidence level for detection. 
This ensures that the attack detection model can be fine-tuned to only trigger alerts for high-
confidence threats, reducing noise in the system. To facilitate bulk retrieval of attack configurations, 
the ListAttackSpecs message aggregates multiple AttackSpecs entries into a structured list. 

The use of Protobuf in this architecture provides several key advantages. Firstly, Protobuf's binary 
format ensures efficient serialization, reducing both the size and transmission time of messages 
compared to traditional text-based formats. This efficiency is particularly beneficial in network security 
and attack detection, where large volumes of streaming data must be processed in real time. Secondly, 
Protobuf allows for schema evolution without breaking compatibility. Fields can be added or 
deprecated without disrupting existing services, making it easier to introduce new attack detection 
parameters as threats evolve. Thirdly, strongly typed structures in Protobuf reduce parsing errors and 
improve data integrity, ensuring that attack configurations remain accurate and consistent across 
different components of the system. 

Furthermore, Protobuf is optimized for gRPC, which enables efficient and secure remote procedure 
calls over HTTP/2. This allows the AttackDetector service to scale effectively, leveraging features such 
as bidirectional streaming, load balancing, and authentication. The combination of Protobuf, Kafka, 
and Elasticsearch in this architecture creates a robust framework for real-time attack detection and 
response. By enabling efficient configuration, retrieval, and deconfiguration of attack profiles, this 
system ensures that security measures remain adaptive and responsive to emerging threats. 

 

syntax = "proto3"; 
package attack_detector; 
 
service AttackDetector { 
    rpc ConfigureDetector       (DetectorConfig) returns (       Empty          ) {} 
    rpc GetDetectorConfiguration(Empty         ) returns (       DetectorConfig ) {} 
    rpc ConfigureAttack         (AttackSpecs   ) returns (       Empty          ) {} 
    rpc ListConfiguredAttacks   (Empty         ) returns (       ListAttackSpecs) {} 
    rpc GetConfiguredAttack     (AttackId      ) returns (       AttackSpecs    ) {} 
    rpc DeconfigureAttack       (AttackId      ) returns (       Empty          ) {} 
} 
 
message Empty {} 
 
message ElasticSearch { 
    repeated string hosts = 1; 
    string authentication = 2; // example: "api_key:<API_KEY>" 
    string index          = 3; 
} 
 
message Kafka { 
    repeated string hosts    = 1; 
    string authentication    = 2; // example: "api_key:<API_KEY>" 
    string consumer_group_id = 3; 
    string consumer_topic    = 4; 
    string producer_topic    = 5; 
} 
 
message DetectorConfig { 
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    ElasticSearch elasticsearch = 1; 
    Kafka         kafka         = 2; 
    float min_ml_confidence_level = 3; 
} 
 
message AttackId { 
    string attack_uuid = 1; 
    float probability_threshold = 2; 
} 
 
message AttackSpecs { 
    AttackId attack_id            = 1; 
    float    min_confidence_level = 2; 
} 
 
message ListAttackSpecs { 
    repeated AttackSpecs attack_specs_list = 1; 
} 

 

3.4.2 Attack Mitigator 

RFC 8519, titled "YANG Data Model for Network Access Control Lists (ACLs)," defines a standardized 
YANG 1.1 data model for configuring and managing ACLs on network devices. An Access Control List 
(ACL) is an ordered set of rules, known as Access Control Entries (ACEs), that determine how packets 
are processed based on specific match criteria and corresponding actions. The YANG model provides 
a structured and vendor-neutral way to configure ACLs, ensuring interoperability across different 
network platforms. 

The ACL model is structured as a hierarchical YANG schema that allows network administrators to 
define ACLs in a standardized manner. At the top level, the acls container holds multiple ACL 
configurations. Each ACL is uniquely identified by a name and a type, which specifies whether it applies 
to IPv4, IPv6, or Ethernet traffic. 

Within each ACL, the aces container holds a list of Access Control Entries (ACEs). Each ACE contains: 

• A unique name for identification. 

• Match conditions that define criteria based on packet headers, organized into: 

• Layer 2 (l2): Matches Ethernet fields, such as source and destination MAC addresses. 

• Layer 3 (l3): Matches IP packet fields, such as source and destination IP addresses. 

• Layer 4 (l4): Matches transport-layer fields, such as TCP/UDP ports. 

• Actions specifying how matching packets should be handled, such as permit, deny, or log. 

One of the most critical aspects of the YANG ACL model is its ability to bind ACLs to network interfaces. 
The model defines an acl-interfaces structure that enables administrators to attach ACLs to specific 
network interfaces, including physical and logical interfaces. This ensures that ACLs can be applied in 
a structured and policy-driven manner to control both ingress (incoming) and egress (outgoing) traffic. 
The interface attachments can apply to various network devices, such as routers, switches, and 
firewalls. 

The YANG model supports different types of interfaces where ACLs can be enforced: 

• Physical Interfaces – Ethernet, fiber, or any other hardware network interface. 

• Logical Interfaces – VLAN interfaces, virtual tunnel interfaces, or sub-interfaces. 

• Software-Defined Interfaces – Interfaces used in SDN-based environments where ACL policies 
are dynamically enforced. 
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• By defining ACLs within the YANG model, administrators can programmatically attach them to 
these interfaces, ensuring centralized and automated security policies across network 
environments. 

The YANG ACL model also includes mechanisms to collect and report statistics. Each ACE can have 
associated counters tracking packet matches, drops, and forwarding actions. These statistics allow 
administrators to monitor ACL effectiveness, optimize rule sets, and troubleshoot network security 
policies efficiently. 

The YANG-based ACL model is designed to be extensible, allowing vendors to augment the base model 
with additional capabilities. For instance, vendors can introduce custom match conditions, logging 
mechanisms, or policy-based ACL configurations while still maintaining compatibility with the standard 
model. Additionally, the model includes feature statements that enable devices to advertise the 
specific ACL capabilities they support. 

3.5 Workflow 

The entire architecture of the CLA platform can be seen in Figure 6. The functionality of the CLA 
platform begins with the presumption that a connected car has already established a Protocol Data 
Unit (PDU) session between itself and the OTA server via the Telecom Network. Then, the user plane 
packets from the vertical service (e.g, IP audio calls, music, video-streaming, OTA updates, etc.) are 
transmitted from the connected car through the gNB to the UPF located in the Mobile Edge Compute 
(MEC). Then, the UPF forwards the data plane packets to the CLA platform. The components in the CLA 
platform determine if incoming packets are an attack or not, if the CLA platform determines the 
Network is being exposed to a PoD attack, the CLA platform creates the necessary ACL which is sent to 
the TFS and finally the ACL is pushed into the Network Element (switch or router or firewall or server) 
that will block the malicious packets. 

 

Figure 6 Specific architecture of the SECaaS platform 

 

Figure 7 illustrates a sequence diagram representing the process of network traffic analysis, attack 
detection, and mitigation using Elasticsearch, Kafka, AI inference, and multiple security components. 
The process begins with Traffic Sniffer capturing network flows and writing them into an Elasticsearch 
database. This step ensures that network data is logged and stored for further processing. Once the 
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network flow is created and written, the Traffic Sniffer publishes the document ID of the network flow 
to Kafka, a real-time event streaming platform. This enables subsequent components in the pipeline 
to access and analyze the network data efficiently. 

Following this, the AI Inference module extracts the document ID of the network flow from Kafka and 
processes it to determine the probability of an attack. Once the inference process is completed, the AI 
system publishes the attack probability back to Kafka, making it available for Attack Detector to 
retrieve. The Attack Detector listens to Kafka for incoming probabilities and assesses the likelihood of 
an attack occurring. If a potential attack is detected, the Attack Mitigator takes action by publishing 
the necessary information to create an Access Control List (ACL). This ACL is intended to restrict or 
control access to affected network entities based on the detected attack patterns. 

The Attack Mitigator listens to Kafka for further information required to generate the ACL in JSON 
format. Once all required data is gathered, the TFS (presumably a security enforcement or traffic 
filtering system) creates and pushes the ACL. The final step involves TFS pushing the ACL into the 
Device, ensuring that security policies are enforced at the endpoint level. This process establishes a 
closed-loop security framework, where threats are detected, evaluated, and mitigated in an 
automated manner. 

 

 

Figure 7 Sequence diagram 

3.6 Preliminary experimental validation of the functionalities  

Upon running the evaluation of the CLA platform, the results are shown in what follows. The Traffic 
Sniffer publishes into Kafka the document id of the network flow it creates, as shown in Figure 8. 
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Figure 8 Creating network flows and publishing into Kafka 

 

The NBI is used to extract network flows from the Elasticsearch database, as shown in Figure 9. 

 

Figure 9 Extract Network Flow from Traffic Sniffer 

The next step in the CLA process is the AI-inference, which extracts network flow from elasticsearch 
and calculates the probability of it being a PoD attack using a Random Forest Classifier machine 
learning algorithm. This demonstration can be seen in Figure 10. The calculated probability is published 
as a message in Kafka. 
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Figure 10 AI Inference message 

The Attack-Detector steps in and is configured remotely if the probability published by the AI-Inference 
is an attack or not, as shown in Figure 11.  

 

Figure 11 Attack Details Message 

The user can set a threshold limit dynamically such that any probability value above the threshold is 
classified as an attack and published as an attack into Kafka, as shown in Figure 12. 

 

 

Figure 12 Attack Detector Configuration 

The next step is for the Attack-Mitigator to create the ACL and post it into the TFS controller, which 
can be seen in Figure 13 and Figure 14. 
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Figure 13 TFS Web UI 

 

 

Figure 14 POST ACL into TFS 

3.7 Final testing and validation 

The CLA platform components are run on a single node along with Elasticsearch database installed in 
the Linux Machine and a single-node Kafka messaging service instead of a multi-node distributed Kafka 
service. On every occurrence of a network flow being produced by the Traffic Sniffer, a timestamp is 
added to it, and every event of AI-Inference assigning a probability of PoD attack to the network flow, 
a timestamp is attached to the message published in Kafka. When the Attack-Detector detects an 
attack a timestamp is recorded at the moment of determination of an attack, these timestamps are 
written as log files in the Linux machine and are later used to calculate the time taken to detect each 
attack, similarly a timestamp is recorded when the Attack-Mitigator posts an ACL into TFS to block 
malicious packets and it is written into a log file which is used to calculate the attack's MTTD and MTTR. 
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Figure 15 The Frequency of the mean time taken to detect an attack 

From 2675 Network Flows, it has been observed that 88 are Ping-of-death (PoD) attacks on the 
Network Infrastructure. The Mean Time To Detect (MTTD) and the Mean Time To Respond (MTTR) for 
these attacks are calculated. The Histogram plot in Figure 15 shows the frequency of the PoD attacks 
and the mean time to detect these attacks and respond to them as well. 

The MTTD of an attack is 7.194 seconds with a variance of 2.3e-05 seconds, and the MTTR to an attack 
is 9.265 seconds with a variance of 23.71 seconds. This means the MTTD for all PoD attacks was around 
7.2 seconds; there were 2 instances where MTTR to a PoD attack was 28 seconds. It can be seen that 
MTTD is a thin bar graph at a single point, while MTTR is spread from 2.4 to 28 seconds, which aligns 
with the consistency of MTTD attacks as observed in Figure 15. 

The placeholder AI-Inference component is trained on a dataset using the Random Forest Classifier 
algorithm, and the learning curve of the ML algorithm is shown in Figure 16. The precision value of the 
ML Model is 0.556, and the Recall value is 0.54. It is important to note that this evaluation is not about 
the AI-Inference component but about the novel CLA platform. A placeholder AI-Inference component 
that has been trained to detect PoD attacks is used to demonstrate the successful integration of the 
AI-Inference component in the CLA platform. 
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Figure 16 Random Forest Classifier Learning Curve 

Finally, the cumulative distribution function (CDF) of MTTD and MTTR is shown in Figure 17. It can be 
seen that the cumulative mean time to detect attacks is roughly 7 seconds, as expected due to previous 
observations in MTTD. As seen in Figure 18, the entire spread of CDF distributions ranges from 7.175 
to 7.2 seconds and around 28 seconds for MTTR, as seen in Figure 17.  

 

 

Figure 17 Cumulative Mean Time taken to detect all attacks on the system 

The components in CLA that affect the MTTR are Attack-Mitigator and TFS. The performance of the 
Attack-Mitigator is relatively consistent, thus it can be concluded that TFS is responsible for the 
variance in MTTR, the time taken by TFS to post an ACL to deny/block malicious packets vary to a high 
degree, this can be due to numerous reasons such as overload of 'POST' ACL requests, time taken to 
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identify the appropriate network element to POST the ACL (generated by Attack-Mitigator), 
interoperability efficiency between TFS and underlay network elements. A detailed description of the 
CDF for MTTD is shown in Figure 18. 

 

 

Figure 18 Cumulative Mean Time taken to detect all attacks on the system 
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4 Use case 2 proof-of-concept (PoC) 

For the proof-of-concept of OTA vehicular software updates at the Circuit Parcmotor Castellolí, all 
software, both server-side and on-board unit (OBU) software, has been migrated to their final 
locations: the Castellolí server and the IDNEO-developed OBU installed in the test vehicle (Figure 19). 

 

 

Figure 19 PoC architecture for OTA vehicular software updates at Castelloli 

During the third round of tests, the focus was on evaluating network connectivity and performance in 
communications between the OBU and the Firmware Over-the-Air (FOTA) server. The assessment 
included analyzing persistent connections, reconnection processes, failure scenarios, download times, 
and network events that could potentially impact communication between the OBU application and 
the FOTA server. Additionally, the use case involving software updates from the management 
application was tested to ensure its functionality and reliability. 

Below is the procedure followed to evaluate the use case. Figure 20 shows the dashboard used to 
manage the devices. There were no devices registered on the dashboard initially. This dashboard is 
generated by an application that, in addition to having a communications port, also has a web 
management port. This application was containerized and deployed at the edge of the network. 

 
Figure 20 LWM2M server deployed on the virtual machine waiting for connections 

Once the OBU was powered on, the device registration process with the server was observed, 
displaying the assigned endpoint name on the dashboard. Additionally, real-time logs from the client 
application running on the device were monitored during the test. Simultaneously, network 
communication packets were captured to facilitate further analysis of system performance and 
connectivity. 
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Figure 21 Top: Client connected to Server, Bottom: TCU console showing server logs 

Within the management platform, relevant data can be obtained from the OBU. This information is 
communicated between the OBU and the server via COAP communication encrypted with DTLS. A 
relevant piece of information, which we can see in Figure 22, is the version of the release deployed on 
the OBU. 

 
Figure 22 TCU and Server interaction, device data observation 

Next, the server is instructed on the location of the file containing the new software version to be 
deployed. For the server, this file is considered a resource that must be transmitted as a configurable 
item. Prior to this step, the file was uploaded to a repository accessible via HTTPS, ensuring secure and 
efficient retrieval during the update process. 

 
Figure 23 Top: Software Release configuration for update, Bottom: Software Releases in HTTPS repository 

 

 



Version 1.0, 30/04/2025 

SUCCESS-6G: DEVISE  Page 29 of 31 TSI-063000-2021-40 

The file is deployed to the OBU, which downloads it once it has been instructed where to retrieve it. 
Figure 24 shows the “firmware.fota” file, which contains the updated software and is stored on the 
OBU's internal SD card. At this point, the Update button will be used to begin deploying the new 
release, since in a real-world environment, this new release will be deployed when the system is 
rebooted during an engine shutdown. 

 

 
Figure 24 Top: Software Update User Interface, Bottom: Release Download to the TCU File System 

Upon system reboot, the OBU executes a startup script that verifies whether a firmware update is 
required. If an update is necessary, the script initiates the update process and ensures its completion. 
Once the update is successfully applied, the OBU is expected to automatically reconnect to the edge 
server, as illustrated in Figure 25. 

 
Figure 25 Reboot and automatic reconnection to the LWM2M server 

 
A further analysis is performed based on the captured network traffic. As illustrated in Figure 26, the 
OBU, assigned the IP address 10.17.201.240, receives a reset command from the server at IP address 
10.17.252.102. Following this, the OBU initiates a DTLS handshake to re-register with the network. This 
event marks the completion of the update process. 

 
Figure 26 TCU offline while performing reboot and update = 3 min 10 s 

 



Version 1.0, 30/04/2025 

SUCCESS-6G: DEVISE  Page 30 of 31 TSI-063000-2021-40 

5 Conclusions 

Ensuring the security of OTA vehicular software updates is essential to protect vehicles from cyber 
threats and unauthorized modifications. The SUCCESS-6G-DEVISE framework demonstrates the 
effectiveness of AI-driven security policies, network slicing, and SECaaS in mitigating risks associated 
with OTA updates. The validation results show a significant reduction in security vulnerabilities, 
enhancing overall trust in the software update process. As cybersecurity threats continue to evolve, 
ongoing research into AI-driven threat detection, blockchain-based verification, and real-time anomaly 
monitoring will be critical in maintaining the integrity and resilience of vehicular software updates. 

One of the key challenges in secure OTA updates is maintaining end-to-end encryption while 
minimizing performance trade-offs. The use of blockchain-based verification techniques ensures that 
software packages remain tamper-proof throughout the update process. By leveraging distributed 
ledger technology, updates can be validated across multiple nodes, reducing the risk of data breaches 
and unauthorized alterations. 

Additionally, integrating AI-driven threat detection mechanisms enhances the real-time security 
posture of the update ecosystem. By continuously monitoring network activity and analyzing 
behavioral anomalies, the system can proactively identify and mitigate potential cyber threats. Future 
advancements should focus on expanding adaptive security frameworks that dynamically respond to 
emerging attack vectors, ensuring robust protection against evolving cyber risks. 
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