CttC

e Financiado por
T‘ UN IC@ la Unién Europea
1+D * 4 x

NextGenerationEU

SUCCESS-6G: DEVISE
WP5 Deliverable E14

Project Title: SUCCESS-6G: DEVISE

Title of Deliverable: Final testing and validation of service KPIs
Status-Version: v1.0

Delivery Date: 30/04/2025

Contributors:

Allen Abishek, Ricard Vilalta, Raul Mufoz (CTTC), Miguel Fornell,
Francisco Paredes (Idneo), Angelos Antonopoulos (Nearby Computing)

Lead editor: CTTC
Reviewers: Charalampos Kalalas (CTTC), Francisco Paredes (ldneo)
Keywords: Real-time location awareness; end-to-end latency; closest node selection

Version 1.0, 30/04/2025

Document revision history

Version Date Description of change

v0.1 20/02/25 Table of Contents (ToC)

v0.2 28/02/25 Content added

v0.3 24/03/25 Additional inputs

v0.4 16/04/25 Final inputs and revision

v1.0 30/04/25 Final version uploaded to the website
Disclaimer

This report contains material which is the copyright of certain SUCCESS-6G Consortium Parties and
may not be reproduced or copied without permission. All SUCCESS-6G Consortium Parties have agreed
to publication of this report, the content of which is licensed under a Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported®.

OO0 | N
Al CC BY-NC-ND 3.0 License —2022-2025 SUCCESS-6G Consortium Parties

Acknowledgment

The research conducted by SUCCESS-6G - TSI-063000-2021-39/40/41 receives funding from the
Ministerio de Asuntos Econdmicos y Transformacion Digital and the European Union-
NextGenerationEU under the framework of the “Plan de Recuperacidon, Transformacion y Resiliencia”
and the “Mecanismo de Recuperacion y Resiliencia”.

L http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en_US

SUCCESS-6G: DEVISE Page 2 of 31 TSI-063000-2021-40

Version 1.0, 30/04/2025

Executive Summary

Security remains a paramount concern in the deployment of over-the-air (OTA) software updates, as
vulnerabilities in vehicle software can expose systems to cyber threats. SUCCESS-6G-DEVISE introduces
a security-first approach by integrating Security as a Service (SECaaS), Al-enhanced threat detection,
and blockchain-based integrity verification. These mechanisms ensure that software updates are
authenticated, encrypted, and delivered securely, preventing unauthorized modifications and
cyberattacks. Experimental results on the ADRENALINE testbed demonstrate enhanced security
enforcement, reduced threat detection times, and improved compliance with cybersecurity standards.
The adoption of Al-driven security policies and network slicing for isolated update distribution solidifies
SUCCESS-6G-DEVISE as a robust framework for secure vehicular software updates.

SUCCESS-6G: DEVISE Page 3 of 31 TSI-063000-2021-40

Version 1.0, 30/04/2025

Table of Contents

EXECULIVE SUMMAIY ...iiiiiiiiiiiiiirieiiiiiiiieiireeiirneitreesrsessteesstsasssenssssasssrssssresssssnsssenssssnssssassssnssssansss 3
Table Of CONLENTES ...ccceeueeeiiiiiiiiiiir e r s s e s s e e e s s aa s s s s s s e e e nnns 4
LISt Of FISUIES cevuuiiiieeiiiiiiiniiiiiiiniiiiiinniieiieeeseiisnesetisnssssiissessstesssssstesssssstesssssstesssssssesssssssessssssssnnsssns 5
1 3o T Lot o o 6
2 Use case 2: Automated software updates for vehiclesccccccorreeeiiiiiiniiiiienciinineniinnnenen. 7
2.1 General description and overall 0bJECLIVESccccuvviiieciiiii e 7
2.2 Userstory 2.2: Over-the-air vehicular software updates with security guarantees................ 8
2.3 Overall UC2 architecture and network deployments........ccccueveiiciiieieciiee e 8
2.4 Facilities for Use Case 2: ADRENALINE Testhedcocceeiienieniiniinieeenieesee e 9

3 Over-the-air vehicular software updates with security guarantees: Implementation at the
ADRENALINE testbed........ccociviiiiiiiii s sasaaae 11

0 Y Yol UL 1 AV - BT = Y o PP RPPPPRt 11
3.2 RequiremMents and KPIS........cooiuiiiiiiiiee ettt e e e e e e e e e e ate e e e e aba e e e eabae e e enraeeeennees 12
3.2.1 L= 1o UL = 0 0 =] £ PPN 12
3.2.2 Key Performance INdicators (KPIS)c.ueiciieiiiieeiiee ettt ettt et e svne e 13
3.3 UC2 Architecture and network deployment.........coccveeiiiiie et 14
I ' e Jo 1Y =To N[oY =T o - [ol Y- RSP 16
341 ATEACK DETECTON vttt sre e sme e seeeeneenre e 16
3.4.2 JAN - [QY L A=Y o] SRR 18
3.5 WOTKFIOW et s s e 19
3.6 Preliminary experimental validation of the functionalities........ccccccoveiiviiiiiciiei e, 20
3.7 Final testing and validation.........coooiiiiiiiiiii e e 23
4 Use case 2 proof-of-conCept (POC) .cc.uuieiiiiiiireenniieiiiiiirennnssseisseneeennnssssesssssessnnnssssssesans 27
5 0o T3 T 1¥ £ o T T 30
6 REFEIENCESciiiiiiiiiiiiiiiie e e s e s e e aaen 31

SUCCESS-6G: DEVISE Page 4 of 31 TSI-063000-2021-40

Version 1.0, 30/04/2025

List of Figures

Figure 1 Implementation phases for the automated software updates.......ccccocvevivviieiiiiciee e, 7
Figure 2 Proposed overall UC2 system archit@CtUre........occveiivciiii i 9
Figure 3 ADRENALINE testbed to be used for Use Case 2.......coccvieeiiciieiiiiiieeieiieeesscieeeesieeeessveeee s 10
Figure 4 Proposed architecture for OTA vehicular software updates with security guarantees.......... 11

Figure 5 Instantiation of SUCCESS-6G architecture for OTA vehicular software updates with security

U T = 1 = = 15
Figure 6 Specific architecture of the SECaaS platform.......ccceeiciiie i 19
U YT [V L= aTol ol P =] o o H PP 20
Figure 8 Creating network flows and publishing into Kafkacccccouviireiiiiiicciie e 21
Figure 9 Extract Network Flow from Traffic Sniffer ... 21
Figure 10 Al INfEIrENCE MESSAZEeeeicrieeeeeiiieeeectiee e e ettt e e e ecttee e e eitteeeeeebteeeeeebeeeeeebsaeesestseeeaseseassassaneesnns 22
Figure 11 Attack Details IMESSAEE ...ccccuueiiieiiieecciieee ettt ettt e ettt e e e et e e e e e ebte e e s ebteeesebteeeessteeeesnssanaaanns 22
Figure 12 Attack Detector CONfiGUIAtiONcoccuiiii ittt e e et e e e eare e e e sataeeeeans 22
FIUIE 13 TFSWED Ul ..veiiieiiiie ettt ettt ettt e e et e e e e e tt e e e e ebte e e e e baeeeseastaeesestaaaeasteeaesnstanenanns 23
Figure 14 POST ACL INTO TFS ittt ettt e sttt e e e e s s sttt e e e e e e s s sabbbaaeeeeesesnnnsnnees 23
Figure 15 The Frequency of the mean time taken to detect an attackcccoecveeeivciieiiiciiie e, 24
Figure 16 Random Forest Classifier Learning CUIMNVE.........cccueeiiicieeeiiiieeeeecieeecesiteee s svteeesssaeeeeessvraeeeeans 25
Figure 17 Cumulative Mean Time taken to detect all attacks on the system........cccocovviiiciieeiicinnnnns 25
Figure 18 Cumulative Mean Time taken to detect all attacks on the system........cccocovveiiiciiieiicienenns 26
Figure 19 PoC architecture for OTA vehicular software updates at Castelloli...........cccevvveiiieiicieennns 27
Figure 20 LWM2M server deployed on the virtual machine waiting for connectionsccccouee..... 27
Figure 21 Top: Client connected to Server, Bottom: TCU console showing server logs..........cccouveen.e. 28
Figure 22 TCU and Server interaction, device data observation...........cccecvviiiiiiiiiinciiee e 28

Figure 23 Top: Software Release configuration for update, Bottom: Software Releases in HTTPS
L= oo 1Y 1 o Y PPN 28

Figure 24 Top: Software Update User Interface, Bottom: Release Download to the TCU File System 29
Figure 25 Reboot and automatic reconnection to the LWM2M SEIrVer........ccoccceeeeeeecccvivieeeeeeeeecceveeens 29

Figure 26 TCU offline while performing reboot and update =3 min 10Sccccccvieeieciiieeecieee e 29

SUCCESS-6G: DEVISE Page 5 of 31 TSI-063000-2021-40

Version 1.0, 30/04/2025

1 Introduction

The increasing reliance on software-driven functionalities in modern vehicles necessitates a robust and
secure method for delivering over-the-air (OTA) software updates. As connected and autonomous
vehicle ecosystems continue to evolve, manufacturers and service providers must ensure that
software updates are not only timely but also protected from cyber threats. Vehicle-to-Everything
(V2X) communication is a key enabler of this transformation, facilitating seamless and reliable OTA
updates while incorporating advanced security measures. However, ensuring data integrity,
preventing unauthorized access, and safeguarding against cyberattacks remain critical challenges. The
SUCCESS-6G-DEVISE project aims to address these security concerns through the integration of
Software-Defined Networking (SDN), Security as a Service (SECaaS), and Al-driven threat detection.

A fundamental requirement for secure OTA software updates is ensuring end-to-end encryption and
authentication mechanisms to prevent unauthorized modifications. Cellular V2X (C-V2X) technology,
enabled by 5G and edge computing, enhances secure communication channels by enabling encrypted,
tamper-proof data exchanges between vehicles and update servers. The SUCCESS-6G-DEVISE
framework incorporates threat detection to continuously monitor update traffic for anomalies and
potential cyber threats. Additionally, the use of network slicing ensures that OTA updates are
transmitted over dedicated, isolated channels to prevent unauthorized interception and manipulation.

Beyond connectivity, cybersecurity remains a primary concern for OTA software updates. Outdated
vehicle software is a prime target for cyberattacks, necessitating stringent security protocols to
authenticate update sources and verify software integrity. SUCCESS-6G-DEVISE integrates Security as
a Service (SECaaS) mechanisms, incorporating Al-enhanced threat detection, real-time anomaly
detection, and blockchain-backed update verification. These security measures ensure that only
authorized updates are deployed, mitigating risks such as firmware tampering, data breaches, and
ransomware attacks. Efficient security management is another key factor in optimizing OTA software
updates. MEC-based security processing reduces the computational burden on centralized cloud
infrastructure by distributing security monitoring and threat mitigation to edge nodes. This allows for
real-time security assessments, rapid threat response, and proactive risk mitigation. SUCCESS-6G-
DEVISE employs threat prediction models to dynamically adjust security policies based on evolving
cyber threats, vehicle density, and update criticality. By leveraging federated learning and distributed
intelligence, the system ensures proactive security enforcement while minimizing processing delays.

This deliverable presents results on the implementation and validation of secure OTA software updates
within a V2X connectivity framework. Experimental evaluations conducted on the ADRENALINE
testbed demonstrate significant improvements in security enforcement, threat mitigation efficiency,
and update integrity verification. The integration of SDN, SECaaS, and Al-driven security mechanisms
has resulted in a scalable and adaptive solution capable of addressing the evolving cybersecurity
demands of connected vehicle ecosystems. The findings from this research highlight the potential of
SUCCESS-6G-DEVISE in revolutionizing vehicular software update security methodologies. By
leveraging cutting-edge networking and security technologies, the proposed framework ensures that
vehicles remain protected against cyber threats while maintaining seamless software update
deployment. As the automotive industry continues to transition towards fully connected and
autonomous systems, the implementation of secure and efficient OTA update mechanisms will be
instrumental in enhancing vehicle safety, data protection, and regulatory compliance.

The subsequent sections present the specific methodologies employed, experimental setup, and
detailed performance evaluations of the proposed secure OTA update system, providing a
comprehensive analysis of its benefits and potential industry applications.

SUCCESS-6G: DEVISE Page 6 of 31 TSI-063000-2021-40

Version 1.0, 30/04/2025

2 Use case 2: Automated software updates for vehicles

2.1 General description and overall objectives

Over-the-air software updates are delivered remotely from a cloud-based server, through a cellular
connection, to the connected vehicle with the aim of providing new features and updates to the
vehicle’s software systems. Such software updates may include changes to any software that controls
the vehicle’s physical parts or electronic signal processing system. In practice, the updates often tend
to apply more to user interfaces like infotainment screens and navigation (i.e., vehicle maps). The
update procedure, when performed over the air, enables a vehicle’s performance and features to be
continuously up-to-date and improved. The integration of advanced data analytics, automated and
remote service delivery eliminates the need for visiting repair/service centres, while technological
advancements in these updates give vehicle manufacturers the freedom to constantly “freshen up”
finished products remotely. C-V2X technology plays a crucial role in the update process, enabling
efficient, scalable, and seamless wireless communication between vehicles and software management
platforms. Figure 1 illustrates the implementation phases for this use case.

Figure 1 Implementation phases for the automated software updates

The overall objectives of this use case can be summarized as follows:
e Safer and more entertaining driving experience.

e Hardware and software components maintained and updated regularly during a vehicle’s
lifespan, implying a slower rate of depreciation.

e Prevention of cyberattacks targeting outdated software.

e Compliance to new rules and standards.

e Lower repair costs and elimination of labour charges.

e Lower warranty costs for manufacturers and lower downtime for customers

The key stakeholders involved in the use case are:

e The Mobile Network Operator (MNO), providing wireless connectivity between the vehicle,
the edge computing infrastructure, and the vehicular software management system. The MNO
is interested in optimizing the network operation by enhancing its energy efficiency and
coverage, while offering novel services to accommodate more users.

e The edge infrastructure provider, offering and managing computational resources at the edge
and supporting real-time services as well as virtualized network functions and Al-empowered
algorithms for advanced computational tasks.

e The equipment provider, providing in-vehicle embedded devices, e.g., hardware components
and sensor devices, that can be remotely reconfigured and updated.

e The vehicular software management system, operated by the equipment provider or vehicle
manufacturer, is responsible for issuing periodically new software updates.

e The software developers, devising and applying data-processing modules for automated
update of vehicular components’ software.

e The cloud providers can optionally be involved, offering additional computational resources
to host the service.

Note that, without loss of generality, some stakeholders may assume multiple roles or, equally, some
roles may be assumed by multiple stakeholders. For instance, the MNO could also be the owner of the

SUCCESS-6G: DEVISE Page 7 of 31 TSI-063000-2021-40

Version 1.0, 30/04/2025

edge infrastructure, or an equipment provider may also be responsible for the operation of the
vehicular software management system or outsource it to a third party.

2.2 User story 2.2: Over-the-air vehicular software updates with security
guarantees

Over-the-air software updates deliver critical information to onboard vehicular devices. As vehicles
introduce new functionalities (such as advanced driver-assist features like self-parking) and the
number of connected vehicles keeps growing, automakers need to handle the regular software
updates required in a secure and trustworthy way. Thus, the integration of intelligent security
enforcement solutions and effective prediction/mitigation of security threats is deemed essential for
the secure operation of the OTA update service and to preserve trustworthiness. Additionally, by
instantiating virtual security functions and by exploiting secure edge provisioning empowered by Al-
driven capabilities, the threat risk for software updates can be further minimized.

2.3 Overall UC2 architecture and network deployments

The elaboration of Figure 2 details a system architecture specifically designed for OTA software
updates, integral to the SUCCESS-6G framework. This architecture addresses the complex
requirements of Use Case 2. Figure 2 Proposed overall UC2 system architectureprovides a high-level
system architecture for OTA vehicular software updates within a robust V2X connectivity framework,
leveraging ETSI TeraFlowSDN for network automation and control. The figure illustrates the key
components enabling software update dissemination to connected vehicles via 5G mobile edge
computing (MEC) nodes.

At the core of this system is the ETSI TeraFlowSDN Controller, which manages the network
infrastructure, including the gNBs (5G base stations) and Transport Network. The NFV Orchestrator
(NFV-0) enables dynamic deployment and scaling of virtualized network functions, such as Distributed
User Plane Functions (D-UPF) within MEC nodes.

Each edge node (Edge Node 1 & Edge Node 2) hosts a Software Update Server, responsible for caching
and distributing updates to C-V2X On-Board Units (OBU) in connected vehicles. These updates are
delivered via the 5G network, passing through the transport network, controlled by the TeraFlowSDN
controller.

To ensure security and integrity, the system integrates a Security-as-a-Service module, providing
firewall protection and secure communications for software updates. The updates originate from local
cloud infrastructure, which includes 5G Core Control Plane components such as SMF (Session
Management Function), AMF (Access and Mobility Management Function), and UPF (User Plane
Function).

The software update client within the vehicle's C-V2X OBU interacts with the Software Update Servers
over the network, ensuring efficient and timely delivery of critical updates for vehicle applications.

SUCCESS-6G: DEVISE Page 8 of 31 TSI-063000-2021-40

Version 1.0, 30/04/2025

Firewall

. Local cloud | AT
o ‘ 5G Core Control Plane
Lo
E | [smf J[AmF]| [upF | |
E N A
3
{:& . MEC
@] { \ f \ ®©
wn
(]
2o
o T
3 D-UPF < -- D-UPF > § %
2| —> - » O
€= m o >
— ‘{ Software Update] Software Update
' Server - Server
T‘ I" /’.— A
! Edgenode 1| .--~ Edge node 2
Transport
. Network

e e .
controller | gNB | gNB

Network Infrastructure Layer

1

In-vehicle layer

C-V2X OBU ﬂ

A S

{Soﬂware Update client]

Figure 2 Proposed overall UC2 system architecture

This architecture highlights the interplay between 5G, MEC, SDN, and V2X technologies to facilitate
secure and efficient OTA software updates, enabling reliable vehicle connectivity and automation.

2.4 Facilities for Use Case 2: ADRENALINE Testbed

The ADRENALINE testbed® is an open and disaggregated SDN/NFV-enabled packet/optical transport
network and edge/core cloud infrastructure for 6G, 10T/V2X and Al/ML services, constantly evolving
since its creation in 2002, and reproducing operators’ networks from an End to End (E2E) perspective
and Data Centre Interconnect (DCl). The figure below summarizes the networking scenario of
ADRENALINE testbed, to be used for the execution of SUCCESS-6G.

SUCCESS-6G: DEVISE Page 9 of 31 TSI-063000-2021-40

Version 1.0, 30/04/2025

Access

Edge-DC3 =m Packet Access Central Office-1 Core
- Central Office .~
j Network (PAN) (Access—CO1] TOR1
CSG3 (Core-CO) - Core-DC 3
_ [1 ODGbp S
p EdoeDCE 100Gbps [@ Edge-DC1 ..CDcw
] > i
Generator o MH1 ||| fcoc2 §
. AR CR moebps CDCS i
’ [Ssam cDC4 |
z e] 400Gbps 400Gbps / j ; H
1006 €561 B i ;
‘. QsFP28 csi_____———-—fﬂ":_— “ @ \
a ROADM-1 ROADM-3 H P
564 4x szsa'aF - M e
IP Probe | @ ocopsF @7 m @. = MH2
Vi 7
‘ti o A J« A
N 1 i | | 2x 150
Fee0C8 i { o ¥ Km SMF., 400(?;! o
- '400Gbps ..
Edge-DC2 eersussn s s snsnasens ssa”
Portabl
OR:N ¢ ONTL Access sz :ﬁF 2% 35Km Regional
5 D Passive Optical i;:g:'sggg;z "Is / SMF Central Office
CPE1|_ ‘—D ?\ Network (PON) . (Regional-CO)
- D TP Client A :T“" . ;‘ . oT1-2 Regional-DC :
ONTS - M) |- ToR
cpEa |- T 1006 o o i =2C] e &) : n.: RDG1 i
R GO s 2;"; QSFP28 zuoen RDADM4 . ZxSSng ROADW-2 2,(=P ROC2 |
H H £ 200Gbps i
e = : oy | 100GoRs : : < | ;
. Skm 10Gbp i TP Client8
=3 SMF i =) i i
CPE4 |- % [— ‘li
- i oLm2 H
—r L (106bps), AR2 Bdge-DC2

Figure 3 ADRENALINE testbed to be used for Use Case 2

ADRENALINE spans the access, aggregation-metro and core segments, and includes distributed Data
Centres (DCs) geographically disperse and located at the edge or in central locations. As depicted in
the figure, the key elements are: (1) an SDN-controlled optical network (flexi-grid DWDM photonic
mesh), with 4 ROADM nodes and over 600km of amplified DWDM links. Currently, all the links of the
mesh are based on amplified C-band transmission, but one of them also supports amplified flexible L-
band transmission; (2) packet-optical nodes with optical pluggable transceivers, providing aggregated
400G data rates (muxponders) for transporting traffic flows between the access networks and the core
central offices or data centers; (3) programmable SDN-enabled S-BVTs able to transmit multiple flows
at variable data rate/reach up to 1 Tb/s; (4) a Packet Access Network (PAN) connected to the metro
infrastructure with IP Cell Site Gateways (CSGs); (5) a PON tree formed by disaggregated Optical
Network Terminals (ONTs), offering connectivity to several Customer Premises Equipment (CPEs).
ADRENALINE also includes a Portable 5G RAN platform for testing and validation of 5G and beyond use
cases. The different access networks (i.e., PON) and the photonic mesh are managed by dedicated
orchestrators and controllers (e.g., CTTC FlexOpt Optical Controller) to automatically handle the
connectivity services entailing the de-/allocation of heterogeneous network resources (i.e., packet and
optical devices). The domain-specific controllers and orchestrators are coordinated hierarchically by
the ETSI TeraFlowSDN controller, which exposes a North Bound Interface to allow interaction of
resources to request network connectivity services. This service platform orchestrates the transport
(optical/packet) and computing:

i) Multi-VIM (virtualized infrastructure managers) combining OpenStack and K8s controllers
for virtual machines and containers;

ii) TeraFlowSDN controller for E2E connectivity among virtual machines, containers, and end-
points. The service platform is also in charge of managing the life-cycle of network services
and network slices: i) a network service is composed of chained NFs;

iii) a network slice is composed of one or several concatenated network services that deploy
a set of NFs.

SUCCESS-6G: DEVISE Page 10 of 31 TSI-063000-2021-40

Version 1.0, 30/04/2025

3 Over-the-air vehicular software updates with security guarantees:
Implementation at the ADRENALINE testbed

3.1 Security as a Service

Figure 4 illustrates a sophisticated network architecture designed for service management through
Software Defined Networking (SDN) and Network Function Virtualization (NFV) technologies. At the
apex of this architecture is the API (NBI), the Northbound Interface, which functions as a pivotal point
of access for service management, facilitating communication between the service management layers
and the underlying network infrastructure.

4
4

P E—
REST calls

API (NBI) SECURITY AS

+ A SERVICE|

Slice DB (Abstracted

- Y
Domain Resources) Slice Manager SSLA & Policies | sstas
Mapper REST calls Policies

Orchestrator

| oss/Bss

Provider Mapper (SBI)

l REST calls REST calls
A 4

Transport SDN ’ REST calls
controller

.
—p
Ly P 4 e T openstack.

NFV-O

Figure 4 Proposed architecture for OTA vehicular software updates with security guarantees

Central to this architecture is the Security as a Service component. It includes a Slice Manager, a
component that manages network slices—distinct segments of the network tailored for specific
operational requirements, each with its own set of performance parameters and policies. This
management is intricately connected to the SSLA & Policies Mapper, which translates service level
agreements and policies into practical, enforceable rules for each network slice.

These slices are cataloged in the Slice DB (Abstracted Domain Resources), a comprehensive repository
that maintains details about network slices and their corresponding resources. The Orchestrator
operates in concert with the Slice DB, orchestrating the deployment and lifecycle of network services
across various network segments.

The Provider Mapper (SBI), or the Southbound Interface, communicates with physical and virtual
network functions, translating the orchestrated service management directives into actionable tasks
within the network fabric. This includes the NFV Orchestrator (NFV-O), which is responsible for the
overall management of virtualized network functions, ensuring their proper instantiation, scaling, and
termination.

At the foundation of the network control plane is the Transport SDN controller, which governs data
plane devices such as routers and switches, enabling efficient and dynamic routing of traffic within the
network.

The infrastructure components, including vehicles, cellular towers, and data centers, are depicted at
the bottom of the figure, highlighting the endpoints of this network architecture. These components
represent the tangible elements where data and services are consumed and delivered, completing the
ecosystem of this advanced network architecture.

SUCCESS-6G: DEVISE Page 11 of 31 TSI-063000-2021-40

Version 1.0, 30/04/2025

3.2 Requirements and KPIs

The rapid evolution of connected vehicle technology has heightened the need for stringent security,
reliability, and performance standards. As modern vehicles increasingly depend on software to manage
critical functionalities—ranging from engine control and braking systems to autonomous navigation—
ensuring robust mechanisms for software updates and network management is paramount. To
address these concerns, this section outlines the key requirements that safeguard automotive
software ecosystems against a broad spectrum of cyber threats while maintaining operational
efficiency.

Each requirement detailed in the following subsections underscores a unique aspect of secure and
reliable software lifecycle management. From Secure Software Update Management that focuses on
authentication, authorization, and integrity checks, to Security as a Service (SECaaS) offering scalable
and automated policy enforcement, these requirements collectively establish a comprehensive
defense strategy. Further, Software-Defined Networking (SDN) & Network Function Virtualization
(NFV) Integration and Slice-Based Service Management enable agile, resource-efficient network
operations tailored to the varying needs of different vehicles and update types. Finally, Northbound
and Southbound Interface Support ensures seamless interoperability across multiple platforms and
vendors, facilitating smooth update distribution and real-time monitoring.

Together, these requirements form a holistic framework designed to protect and enhance the
software-driven functionalities of connected vehicles. By emphasizing security, scalability, and
interoperability, they serve as the foundational building blocks for maintaining trust, minimizing risks,
and supporting the advanced features of next-generation automotive systems.

3.2.1 Requirements
3.2.1.1 Secure Software Update Management

Ensuring that software updates are securely distributed is critical to preventing unauthorized
modifications, malware insertion, or other cybersecurity threats. The system must authenticate and
authorize update sources before distribution, verifying the integrity and authenticity of software
packages before deployment to vehicles. This process helps mitigate security risks associated with
malicious attacks or accidental corruption of updates, ensuring that only trusted software is installed
on connected vehicles.

The rationale behind this requirement is to enhance the safety and reliability of vehicular software
systems. Modern vehicles rely heavily on software to control essential functionalities, including
braking, navigation, and autonomous driving. Any compromise in the update process could lead to
severe security breaches or operational failures. By implementing stringent authentication
mechanisms and encryption methods, the system can maintain trust in over-the-air updates while
complying with automotive cybersecurity standards.

3.2.1.2 Security as a Service (SECaaS)

The security framework should be designed as a scalable and adaptable service that automates
security policy enforcement across different network slices. This ensures a consistent security posture
while accommodating various levels of security requirements based on the specific needs of each
vehicle or update type. Security policies should be dynamically adjustable to respond to evolving cyber
threats and regulatory requirements without requiring significant infrastructure changes.

The rationale for integrating Security as a Service is to provide a centralized and efficient approach to
managing security controls across multiple network domains. Instead of applying security
configurations manually to individual network components, SECaaS enables automation, monitoring,
and policy enforcement in a streamlined manner. This approach reduces operational overhead,

SUCCESS-6G: DEVISE Page 12 of 31 TSI-063000-2021-40

Version 1.0, 30/04/2025

improves compliance with cybersecurity regulations, and enhances the ability to respond quickly to
emerging threats in the automotive ecosystem.

3.2.1.3 Software-Defined Networking (SDN) & Network Function Virtualization (NFV) Integration

The system must leverage SDN and NFV to optimize network resource allocation, enhance scalability,
and ensure efficient update distribution. SDN enables centralized network control, while NFV provides
flexible network functions that can be deployed dynamically as needed. Together, these technologies
support real-time monitoring and adaptation of network conditions, ensuring that software updates
reach their intended destinations with minimal latency and high reliability.

The rationale behind integrating SDN and NFV is to address the growing complexity of vehicular
networks, where software updates must be transmitted efficiently over heterogeneous network
infrastructures. By decoupling network control and function deployment from traditional hardware
dependencies, SDN and NFV enable more agile, responsive, and cost-effective network management.
This improves update delivery speeds and enhances the resilience of the network infrastructure,
preventing bottlenecks and service disruptions.

3.2.1.4 Slice-Based Service Management

Network slicing must be implemented to create isolated virtual networks tailored to different
operational needs. Each slice should be assigned specific security policies and Quality of Service (QoS)
parameters to ensure that critical updates receive the highest priority. The slice database should store
metadata about network slices, facilitating efficient resource allocation and policy enforcement.

The rationale for using network slicing is to ensure that essential updates, such as security patches or
firmware upgrades, are delivered with guaranteed performance and minimal risk of interference.
Vehicles operating in different regions or under varying network conditions may have different
connectivity requirements. Slicing enables customized resource allocation, allowing for differentiated
services while maintaining strong security and performance guarantees.

3.2.1.5 Northbound and Southbound Interface Support

The system must expose well-defined interfaces for seamless integration with external platforms. The
Northbound Interface (NBI) should facilitate communication with service management applications,
while the Southbound Interface (SBI) should interact with physical and virtual network functions. These
interfaces should support standardized protocols to ensure compatibility across different vendors and
infrastructure providers.

The rationale for exposing standardized interfaces is to promote interoperability and simplify
integration with third-party applications, including automotive manufacturers, cybersecurity
monitoring tools, and cloud-based orchestration platforms. By enabling flexible API interactions, the
system can support automated update workflows, real-time security monitoring, and policy-driven
update deployments, enhancing the overall efficiency of over-the-air update management.

3.2.2 Key Performance Indicators (KPIs)
3.2.2.1 End-to-end encryption success rate (%)

This KPl measures the effectiveness of encryption mechanisms in securing data transmission by
assessing the percentage of successful encrypted transmissions without breaches.

Encryption is crucial for ensuring the confidentiality and integrity of software updates during
transmission. A high success rate indicates a robust security framework, reducing the risk of data
tampering or interception by malicious actors.

Target Value: At least 99.9% of transmitted updates should be successfully encrypted without any
detected breaches.

SUCCESS-6G: DEVISE Page 13 of 31 TSI-063000-2021-40

Version 1.0, 30/04/2025

3.2.2.2 Software update delivery latency (ms)

This KPI measures the time taken for an update to reach its destination from the source.

Low latency is essential for delivering time-sensitive security patches and feature updates to vehicles.
Delays in updates could leave vehicles vulnerable to exploits or operational inefficiencies.

Target Value: The system should deliver critical updates within 500 ms in optimal network conditions.
3.2.2.3 SLA compliance rate (% adherence to defined policies)

This KPI evaluates how well the system adheres to predefined service level agreements (SLAs)
regarding security, reliability, and performance.

Ensuring SLA compliance helps maintain trust with stakeholders and guarantees that vehicles receive
updates as promised within set parameters.

Target Value: At least 98% adherence to SLAs across all update transactions.
3.2.2.4 Mean Time to Detect (MTTD)

MTTD is the time elapsed from the moment a security threat or attack occurs to the point where it is
successfully detected by the security system. It represents the efficiency of threat detection
mechanisms, including Al-driven inference models, log monitoring, and real-time anomaly detection.

Importance: A lower MTTD is critical for early threat identification, reducing the window of exposure
and limiting potential damage. Faster detection enables security teams to respond proactively before
an attacker can exploit vulnerabilities. Optimizing MTTD is particularly important in cloud-native
environments, 5G networks, and real-time cybersecurity frameworks, where high-speed attack
detection is required to protect critical infrastructure and services.

Target Values/Thresholds: Ideal: Less than 1 minute for Al-enhanced cybersecurity systems with real-
time monitoring. Acceptable: Between 5—10 minutes in standard SOC (Security Operations Center)
environments with human-assisted analysis. Critical Risk: Above 30 minutes, as this increases the
likelihood of widespread damage, extended data breaches, and regulatory non-compliance.

3.2.2.5 Mean Time to Respond (MTTR)

MTTR is the time elapsed from the moment a security threat is detected to the complete mitigation or
resolution of the issue. It includes incident triage, threat analysis, containment, mitigation, system
restoration, and validation to ensure the threat has been neutralized.

Importance: A lower MTTR reduces the impact of cyberattacks by minimizing system downtime, data
breaches, and business disruptions. In environments like telco networks, 10T ecosystems, and cloud-
native microservices, rapid response ensures business continuity and compliance with cybersecurity
policies. Automated orchestration and Al-driven remediation significantly improve MTTR by enabling
real-time threat containment and recovery.

Target Values/Thresholds: Ideal: Under 5 minutes for automated threat response mechanisms (e.g.,
SDN-controlled ACL updates, automated patching). Acceptable: 30-60 minutes in cases where manual
intervention or forensic analysis is required. Critical Risk: Above 2 hours, as prolonged response times
increase financial losses, system disruptions, and potential data exfiltration risks.

3.3 UC2 Architecture and network deployment

Figure 5 illustrates a comprehensive architecture for enabling software updates in a Cellular Vehicle-
to-Everything (C-V2X) environment using 5G, Multi-access Edge Computing (MEC), Network Function
Virtualization (NFV), and Software-Defined Networking (SDN). The system is structured into multiple
layers to ensure efficient data processing, low-latency communication, and secure software updates
for in-vehicle systems. These layers include the Orchestration Layer, 5G Core Control Plane (Local

SUCCESS-6G: DEVISE Page 14 of 31 TSI-063000-2021-40

Version 1.0, 30/04/2025

Cloud), MEC Layer (Edge Nodes), Network Infrastructure Layer, and In-Vehicle Layer. Among these, the
dark blue elements play a crucial role in orchestrating network functions, ensuring security, and
enabling seamless data transmission.

Local cloud

5G Core Control Plane
{[SMF | AMF

]J[uPF |

O

D-UPF D-UPF .| .

Software Update
Server

Software Update
Server

AN - J!-""

Edge node 1

| Edge node 2

. =
Metwork Infrastructure Layer

1

In-vehicle layer

=)

Figure 5 Instantiation of SUCCESS-6G architecture for OTA vehicular software updates with security guarantees

[Software Update client]

C-V2X 0BU

At the top of the architecture, the Orchestration Layer is responsible for managing the deployment
and lifecycle of network functions using NFV and SDN technologies. The NFV Orchestrator (NFV-O)
oversees the instantiation, scaling, and management of Distributed User Plane Functions (D-UPFs),
which are deployed closer to the edge to reduce latency. Alongside NFV-O, the End-to-End SDN
Controller provides centralized control over the transport network, ensuring efficient data routing and
dynamic policy enforcement. This integration of NFV and SDN allows for adaptive network resource
management, dynamic traffic steering, and enhanced service reliability, which are essential for
delivering real-time software updates to connected vehicles.

The Multi-access Edge Computing (MEC) layer is a critical part of the architecture, hosting D-UPFs and
Software Update Servers at edge nodes. The D-UPF (Distributed User Plane Function) is responsible
for offloading data traffic from the 5G core, allowing localized data processing and reducing
dependency on central cloud infrastructure. This offloading mechanism enhances the responsiveness
of V2X applications, including OTA software updates. The Software Update Servers deployed at the
edge nodes ensure that vehicles receive software patches and security updates efficiently, minimizing
downtime and optimizing network resource utilization. By leveraging MEC, the system reduces latency,
improves update delivery speed, and enhances overall network performance.

To protect the integrity and confidentiality of software updates and vehicular communications, the
architecture incorporates a Security as a Service framework. This module ensures that all software

SUCCESS-6G: DEVISE Page 15 of 31 TSI-063000-2021-40

Version 1.0, 30/04/2025

updates are encrypted, verified, and transmitted securely to prevent cybersecurity threats such as
man-in-the-middle attacks, data tampering, and unauthorized access. The security framework is tightly
integrated with the MEC layer and orchestration systems, ensuring continuous threat monitoring,
anomaly detection, and compliance with cybersecurity policies. By implementing security measures at
both the orchestration and edge levels, the system guarantees the safety and reliability of C-V2X
applications.

At the transport network level, gNBs (Next-Generation Base Stations) facilitate communication
between vehicles and the edge computing infrastructure. These base stations provide high-speed, low-
latency connectivity to ensure that software update clients in vehicles (C-V2X OBUs) receive real-time
updates. The transport network is dynamically managed by the E2E SDN controller, which optimizes
routing paths based on network congestion, traffic demand, and security policies. Within the In-Vehicle
Layer, the Software Update Client ensures that received updates are properly installed, validated, and
synchronized with the vehicle's onboard systems. This integration ensures that connected vehicles
remain updated with the latest firmware, security patches, and feature enhancements without
requiring physical intervention.

3.4 Exposed interfaces

We have developed two different interfaces, dedicated to the attack detector and attack mitigator.

3.4.1 Attack Detector

The provided Protobuf definition outlines an AttackDetector service within the "attack_detector"
package, leveraging proto3, the latest version of the Protobuf syntax. This service is responsible for
configuring and managing an attack detection system that integrates with Elasticsearch, Kafka, and
machine learning-based threat detection.

The AttackDetector service is defined as a gRPC-based service that enables clients to configure and
retrieve attack detection settings remotely. It consists of six Remote Procedure Call (RPC) methods,
each of which facilitates specific operations. The ConfigureDetector method allows clients to configure
the attack detector using a DetectorConfig message, which includes Elasticsearch and Kafka settings
along with a minimum machine learning confidence level for attack detection. The
GetDetectorConfiguration method enables clients to retrieve the current configuration settings,
ensuring they can verify or modify existing parameters when necessary. Additionally, the
ConfigureAttack method allows users to define attack specifications, while ListConfiguredAttacks
provides a list of all active attack configurations. To retrieve details of a specific attack, clients can use
the GetConfiguredAttack method, which takes an Attackld as input and returns the corresponding
AttackSpecs. Lastly, the DeconfigureAttack method allows for the removal of an attack configuration,
ensuring that outdated or irrelevant attack profiles do not persist in the system.

Each RPC function follows a request-response model, meaning a client sends a request message and
expects a structured response. This approach is particularly useful for gRPC-based microservices,
where real-time communication is essential. The service relies on various Protobuf messages to
facilitate structured data exchange. The Empty message serves as a placeholder for functions that do
not require parameters or return values, similar to an empty JSON object ({}). The ElasticSearch
message defines the configuration for an Elasticsearch database, which the attack detector uses for
storing and querying attack data. It includes a list of hosts, authentication details, and an index name,
ensuring secure and efficient interactions with the database. Similarly, the Kafka message encapsulates
settings for Kafka-based event streaming, including broker hosts, authentication credentials, consumer
group identifiers, and topic names for sending and receiving messages. This configuration enables the
attack detector to process real-time threat intelligence streams efficiently.

The DetectorConfig message acts as a central configuration entity, combining Elasticsearch and Kafka
settings with a minimum machine learning confidence level. This confidence level determines the
threshold at which the system considers a potential attack to be valid, balancing false positives and

SUCCESS-6G: DEVISE Page 16 of 31 TSI-063000-2021-40

Version 1.0, 30/04/2025

false negatives effectively. The attack identification process relies on the Attackld message, which
contains a unique attack UUID and a probability threshold. This allows the system to manage and track
individual attack instances with a predefined level of certainty. Furthermore, the AttackSpecs message
extends Attackld by introducing an additional parameter: the minimum confidence level for detection.
This ensures that the attack detection model can be fine-tuned to only trigger alerts for high-
confidence threats, reducing noise in the system. To facilitate bulk retrieval of attack configurations,
the ListAttackSpecs message aggregates multiple AttackSpecs entries into a structured list.

The use of Protobuf in this architecture provides several key advantages. Firstly, Protobuf's binary
format ensures efficient serialization, reducing both the size and transmission time of messages
compared to traditional text-based formats. This efficiency is particularly beneficial in network security
and attack detection, where large volumes of streaming data must be processed in real time. Secondly,
Protobuf allows for schema evolution without breaking compatibility. Fields can be added or
deprecated without disrupting existing services, making it easier to introduce new attack detection
parameters as threats evolve. Thirdly, strongly typed structures in Protobuf reduce parsing errors and
improve data integrity, ensuring that attack configurations remain accurate and consistent across
different components of the system.

Furthermore, Protobuf is optimized for gRPC, which enables efficient and secure remote procedure
calls over HTTP/2. This allows the AttackDetector service to scale effectively, leveraging features such
as bidirectional streaming, load balancing, and authentication. The combination of Protobuf, Kafka,
and Elasticsearch in this architecture creates a robust framework for real-time attack detection and
response. By enabling efficient configuration, retrieval, and deconfiguration of attack profiles, this
system ensures that security measures remain adaptive and responsive to emerging threats.

syntax = "proto3";
package attack detector;

service AttackDetector {
rpc ConfigureDetector (DetectorConfig) returns (Empty) {}
rpc GetDetectorConfiguration(Empty)returns (DetectorConfig) {}
rpc ConfigureAttack (AttackSpecs)returns(Empty) {}
rpc ListConfiguredAttacks (Empty)returns (ListAttackSpecs) {}
rpc GetConfiguredAttack (Attackld)returns(AttackSpecs){}
rpc DeconfigureAttack (Attackld)returns(Empty) {}

message Empty {}

message ElasticSearch {
repeated string hosts = 1;
string authentication = 2; // example: "api_key:<API_KEY>"
string index =3;

}

message Kafka {
repeated string hosts =1;
string authentication =2;// example: "api_key:<APl_KEY>"
string consumer_group _id = 3;
string consumer_topic =4;
string producer_topic =5;

message DetectorConfig {

SUCCESS-6G: DEVISE Page 17 of 31 TSI-063000-2021-40

Version 1.0, 30/04/2025

ElasticSearch elasticsearch = 1;
Kafka kafka =2;
float min_ml_confidence_level = 3;

}

message Attackld {
string attack_uuid = 1;
float probability_threshold = 2;

}

message AttackSpecs {
Attackld attack_id =1;
float min_confidence_level = 2;

}

message ListAttackSpecs {
repeated AttackSpecs attack_specs_list = 1;
!

3.4.2 Attack Mitigator

RFC 8519, titled "YANG Data Model for Network Access Control Lists (ACLs)," defines a standardized
YANG 1.1 data model for configuring and managing ACLs on network devices. An Access Control List
(ACL) is an ordered set of rules, known as Access Control Entries (ACEs), that determine how packets
are processed based on specific match criteria and corresponding actions. The YANG model provides
a structured and vendor-neutral way to configure ACLs, ensuring interoperability across different
network platforms.

The ACL model is structured as a hierarchical YANG schema that allows network administrators to
define ACLs in a standardized manner. At the top level, the acls container holds multiple ACL
configurations. Each ACL is uniquely identified by a name and a type, which specifies whether it applies
to IPv4, IPv6, or Ethernet traffic.

Within each ACL, the aces container holds a list of Access Control Entries (ACEs). Each ACE contains:

e Aunique name for identification.

e Match conditions that define criteria based on packet headers, organized into:

e Layer 2 (I12): Matches Ethernet fields, such as source and destination MAC addresses.

e Layer 3 (I3): Matches IP packet fields, such as source and destination IP addresses.

e Layer 4 (l4): Matches transport-layer fields, such as TCP/UDP ports.

e Actions specifying how matching packets should be handled, such as permit, deny, or log.

One of the most critical aspects of the YANG ACL model is its ability to bind ACLs to network interfaces.
The model defines an acl-interfaces structure that enables administrators to attach ACLs to specific
network interfaces, including physical and logical interfaces. This ensures that ACLs can be applied in
a structured and policy-driven manner to control both ingress (incoming) and egress (outgoing) traffic.
The interface attachments can apply to various network devices, such as routers, switches, and
firewalls.

The YANG model supports different types of interfaces where ACLs can be enforced:

e Physical Interfaces — Ethernet, fiber, or any other hardware network interface.

e Logical Interfaces — VLAN interfaces, virtual tunnel interfaces, or sub-interfaces.

e Software-Defined Interfaces — Interfaces used in SDN-based environments where ACL policies
are dynamically enforced.

SUCCESS-6G: DEVISE Page 18 of 31 TSI-063000-2021-40

Version 1.0, 30/04/2025

e By defining ACLs within the YANG model, administrators can programmatically attach them to
these interfaces, ensuring centralized and automated security policies across network
environments.

The YANG ACL model also includes mechanisms to collect and report statistics. Each ACE can have
associated counters tracking packet matches, drops, and forwarding actions. These statistics allow
administrators to monitor ACL effectiveness, optimize rule sets, and troubleshoot network security
policies efficiently.

The YANG-based ACL model is designed to be extensible, allowing vendors to augment the base model
with additional capabilities. For instance, vendors can introduce custom match conditions, logging
mechanisms, or policy-based ACL configurations while still maintaining compatibility with the standard
model. Additionally, the model includes feature statements that enable devices to advertise the
specific ACL capabilities they support.

3.5 Workflow

The entire architecture of the CLA platform can be seen in Figure 6. The functionality of the CLA
platform begins with the presumption that a connected car has already established a Protocol Data
Unit (PDU) session between itself and the OTA server via the Telecom Network. Then, the user plane
packets from the vertical service (e.g, IP audio calls, music, video-streaming, OTA updates, etc.) are
transmitted from the connected car through the gNB to the UPF located in the Mobile Edge Compute
(MEC). Then, the UPF forwards the data plane packets to the CLA platform. The components in the CLA
platform determine if incoming packets are an attack or not, if the CLA platform determines the
Network is being exposed to a PoD attack, the CLA platform creates the necessary ACL which is sent to
the TFS and finally the ACL is pushed into the Network Element (switch or router or firewall or server)
that will block the malicious packets.

Natmerace Lo oooemmmer m

-\?‘/’
>
x4, ;
2 Centralized Cloud
Network-Flpws Rl
&
/,’ NETWORK
e INFRASTRUCTURE

((téﬁ)
Probabilityf’ﬁr’ce ntage

y () \
F/ ,ﬁ-’.\ L 8

Mobile Edge Compute (MEC)

Figure 6 Specific architecture of the SECaa$ platform

Figure 7 illustrates a sequence diagram representing the process of network traffic analysis, attack
detection, and mitigation using Elasticsearch, Kafka, Al inference, and multiple security components.
The process begins with Traffic Sniffer capturing network flows and writing them into an Elasticsearch
database. This step ensures that network data is logged and stored for further processing. Once the

SUCCESS-6G: DEVISE Page 19 of 31 TSI-063000-2021-40

Version 1.0, 30/04/2025

network flow is created and written, the Traffic Sniffer publishes the document ID of the network flow
to Kafka, a real-time event streaming platform. This enables subsequent components in the pipeline
to access and analyze the network data efficiently.

Following this, the Al Inference module extracts the document ID of the network flow from Kafka and
processes it to determine the probability of an attack. Once the inference process is completed, the Al
system publishes the attack probability back to Kafka, making it available for Attack Detector to
retrieve. The Attack Detector listens to Kafka for incoming probabilities and assesses the likelihood of
an attack occurring. If a potential attack is detected, the Attack Mitigator takes action by publishing
the necessary information to create an Access Control List (ACL). This ACL is intended to restrict or
control access to affected network entities based on the detected attack patterns.

The Attack Mitigator listens to Kafka for further information required to generate the ACL in JSON
format. Once all required data is gathered, the TFS (presumably a security enforcement or traffic
filtering system) creates and pushes the ACL. The final step involves TFS pushing the ACL into the
Device, ensuring that security policies are enforced at the endpoint level. This process establishes a
closed-loop security framework, where threats are detected, evaluated, and mitigated in an
automated manner.

8. (oo EoOETmOETE @ D
create network flow and write it.
publish document id of network flow.
extract document id of network flow.
pull the network flow.
publish Attack Probability.
listen to Kafka for Probability of attack.
pull network flow to create ACL.
publish message with information to create ACL.
listen to Kafka for information needed to create ACL as a JSON file.
_ create and push ACL.

push ACL into Device.
B

Figure 7 Sequence diagram

3.6 Preliminary experimental validation of the functionalities

Upon running the evaluation of the CLA platform, the results are shown in what follows. The Traffic
Sniffer publishes into Kafka the document id of the network flow it creates, as shown in Figure 8.

SUCCESS-6G: DEVISE Page 20 of 31 TSI-063000-2021-40

Version 1.0, 30/04/2025

Terminal

cPartition(toplc="network-flows', partition=0) with base offset @ log start off
© and error None.
NFlow(ide1,
expiration_id«o,

Consumer: network-flows

r r

7-28 17:09:03,136] WARN [Consumer clientldeconsole-consumer, groupldecons
r-15052] Error while fetching metadata with correlation 1d 2 : {netwo
. ILABLE} (org.apache.kafka.clients. workClient)
vian_1id=0 1
tunnel 1deod r clientId=conso nsumer, grouple
bidirectional_flrst_seen mss1722179443496 e L :
b;d\‘,:(uo"m- ;;;‘:;H“ 1'7}1;}9‘.“(18 ’ .- flows=LEADER ILABLE) (org.apache.kafka.clients.NetworkClient)
’x‘\d‘;;(.Hc’\al—c\luv‘a;(or\ - N st 4-07-28 17:09:04,808] WARN [Con r clientlids=co le-co er, groupldscons
;"d;:’u;((lo‘n)l}xa(b‘tmz le-consumer-15052] Error while fetching metadatas w rrelation id 6 : (netwo
b > e P, -flows=LEADER AVAILASL .apache.kafka.client etworkClient)
bidirectional bytes=392, -07-28 17:09] | [Consumer clientld nso consumer, groupld=cons
onsumer-15 \ ching metadata with correlation {d 7 : {netw
ows=LEADER £ apache.kafka.clients.NetworkClient)
28 17 :08,065) WARN [Consumer clientId=console-consumer, grouplid=cons
onsumer-15052] Error while fetching metadata wi correlation 4d 9 : {netwo
rk-flowssLEADER_NOT_AVAILABLE)} (org.apache.kafka.clients.NetworkClient)
"doc_td:
"doc_\d:
“doc_1d:

“doc_1d:

Figure 8 Creating network flows and publishing into Kafka

The NBI is used to extract network flows from the Elasticsearch database, as shown in Figure 9.

6 UTC 2°

Figure 9 Extract Network Flow from Traffic Sniffer

The next step in the CLA process is the Al-inference, which extracts network flow from elasticsearch
and calculates the probability of it being a PoD attack using a Random Forest Classifier machine
learning algorithm. This demonstration can be seen in Figure 10. The calculated probability is published
as a message in Kafka.

SUCCESS-6G: DEVISE Page 21 of 31 TSI-063000-2021-40

Version 1.0, 30/04/2025

bf _death probability of: 0.04, has a mail spam probability of 0"}
"message”: "The flow with ID: 7 has a DoS attack probability of: 0, has a Ping_
bf _death probability of: 0.04, has a mail spam probability of 0"}
"message”: "The flow with ID: 8 has a DoS attack probability of: 0, has a Ping_
bf _death probability of: ©.18, has a mail spam probability of 0"}

"message”: "The flow with ID: 9 has a DoS attack probability of: 0, has a Ping_
bf _death probability of: 0.04, has a mail spam probability of 0"}
"message”: "The flow with ID: 10 has a DoS attack probability of: 0, has a Ping
of _death probability of: 0.04, has a mail spam probability of 0"}

Figure 10 Al Inference message
The Attack-Detector steps in and is configured remotely if the probability published by the Al-Inference
is an attack or not, as shown in Figure 11.

Consumer: attack-details

| B Fos

{"Attack Type": "Ping_of_Death", "Timestamp": "2024-07-28T15:13:19.631319", "det
ails": {"doc_id": 8, "source_port": 44790, "destination_ip": "104.16.100.215",
destination_port": 443, "protocol": 6, "document_timestamp”: "2024-07-28T717:13:1
2.866307"

Figure 11 Attack Details Message

The user can set a threshold limit dynamically such that any probability value above the threshold is
classified as an attack and published as an attack into Kafka, as shown in Figure 12.

on3 client.py

Enter min_ml_confidence_level (0 to 1): 0.8
e ConfigureDetector response:
GetDetectorConfiguration response: elasticsearch {
= hosts: "localhost:9200"
P authentication: "api_key:dummy"

" index: "network-flows"
1}

kafka {
hosts: "localhost:9092"
authentication: "api_key:dummy"
consumer_group_id: "groupl”
consumer_topic: "probability-flows"
producer_topic: "attack-details"

;

min_ml_confidence_level: 0.8

Figure 12 Attack Detector Configuration

The next step is for the Attack-Mitigator to create the ACL and post it into the TFS controller, which
can be seen in Figure 13 and Figure 14.

SUCCESS-6G: DEVISE Page 22 of 31 TSI-063000-2021-40

Version 1.0, 30/04/2025

L c 2 O localbost o @ @ 0

ETSI TeraFlowSDN Controller
Select the desired Context/Topology

CtxfTopo Context(admin)Topelogyladmin) - Submit

Upload a JSON descriptors file

Descriptors Browse... Mo file selected, Submit

Figure 13 TFS Web Ul

: {"Attack Type': 'Ping_of_Death', '‘Timestamp': '2024-07-28716:03:06.267690', 'details': {'doc_1id'
': 49474, 'destination_{ip': '104.18.13.201', ‘'destination_port': 443, ‘protocol': 6, 'document_ti
'2024-07-28718:03:03.990214'})

2024-07-28 18:03:08

ocument timestamp: 2024-07-28718:03:03.990214, Time difference: 4.133747 seconds
Recelved message: {'Attack Type': 'Ping_of_Death', 'Timestamp': 024-07-28T716:04:02.481628', 'details': {'doc_1d'
: 23, 'source_port': 47614, 'destination_ip': '104.18.13.201", 'destination_port': 443, 'protocol': 17, 'document_

timestamp': '2024-07-28T18:03:57.204019'}}
ACL posted at: 2024-07-28 18:04:04
Post response: {}

Document timestamp: 2024-07-28718:03:57.204019, Time difference: 6.996824 seconds

Recelved message: {'Attack Type': 'Ping_of _Death', 'Timestamp': '2024-07-28T716:04:12.593039', 'details': {'doc_1id'
: 28, 'source_port': 42466, 'destination_ip': '104.18,.31.2', 'destination_port': 443, 'protocol': 17, 'document_ti
estamp': '2024-07-28718:04:08.476605'})

Figure 14 POST ACL into TFS

3.7 Final testing and validation

The CLA platform components are run on a single node along with Elasticsearch database installed in
the Linux Machine and a single-node Kafka messaging service instead of a multi-node distributed Kafka
service. On every occurrence of a network flow being produced by the Traffic Sniffer, a timestamp is
added to it, and every event of Al-Inference assigning a probability of PoD attack to the network flow,
a timestamp is attached to the message published in Kafka. When the Attack-Detector detects an
attack a timestamp is recorded at the moment of determination of an attack, these timestamps are
written as log files in the Linux machine and are later used to calculate the time taken to detect each
attack, similarly a timestamp is recorded when the Attack-Mitigator posts an ACL into TFS to block
malicious packets and it is written into a log file which is used to calculate the attack's MTTD and MTTR.

SUCCESS-6G: DEVISE Page 23 of 31 TSI-063000-2021-40

Version 1.0, 30/04/2025

301 mm MTTR

Frequency
= = N N
o (% o u

(%)}

20 25 30
Mean Time Taken to Detect and Respond

0 ujumd]_%ﬂmxﬂﬂhwmnm%m - y

Figure 15 The Frequency of the mean time taken to detect an attack

From 2675 Network Flows, it has been observed that 88 are Ping-of-death (PoD) attacks on the
Network Infrastructure. The Mean Time To Detect (MTTD) and the Mean Time To Respond (MTTR) for
these attacks are calculated. The Histogram plot in Figure 15 shows the frequency of the PoD attacks
and the mean time to detect these attacks and respond to them as well.

The MTTD of an attack is 7.194 seconds with a variance of 2.3e-05 seconds, and the MTTR to an attack
is 9.265 seconds with a variance of 23.71 seconds. This means the MTTD for all PoD attacks was around
7.2 seconds; there were 2 instances where MTTR to a PoD attack was 28 seconds. It can be seen that
MTTD is a thin bar graph at a single point, while MTTR is spread from 2.4 to 28 seconds, which aligns
with the consistency of MTTD attacks as observed in Figure 15.

The placeholder Al-Inference component is trained on a dataset using the Random Forest Classifier
algorithm, and the learning curve of the ML algorithm is shown in Figure 16. The precision value of the
ML Model is 0.556, and the Recall value is 0.54. It is important to note that this evaluation is not about
the Al-Inference component but about the novel CLA platform. A placeholder Al-Inference component
that has been trained to detect PoD attacks is used to demonstrate the successful integration of the
Al-Inference component in the CLA platform.

SUCCESS-6G: DEVISE Page 24 of 31 TSI-063000-2021-40

Version 1.0, 30/04/2025

1.00 +—&— — & & o
0.95 -~
0.90 4
et
; 0.85
0.80 4
0.75 1
—8— Training score
—8— Cross-validation score

G.TD T T T T T T T T
100 200 300 400 500 600 700 800
Training examples

Figure 16 Random Forest Classifier Learning Curve

Finally, the cumulative distribution function (CDF) of MTTD and MTTR is shown in Figure 17. It can be
seen that the cumulative mean time to detect attacks is roughly 7 seconds, as expected due to previous
observations in MTTD. As seen in Figure 18, the entire spread of CDF distributions ranges from 7.175
to 7.2 seconds and around 28 seconds for MTTR, as seen in Figure 17.

MTTD

Cumulative Probability

5 10 15 20 25 30
Time Elapsed (s)

Figure 17 Cumulative Mean Time taken to detect all attacks on the system

The components in CLA that affect the MTTR are Attack-Mitigator and TFS. The performance of the
Attack-Mitigator is relatively consistent, thus it can be concluded that TFS is responsible for the
variance in MTTR, the time taken by TFS to post an ACL to deny/block malicious packets vary to a high
degree, this can be due to numerous reasons such as overload of 'POST' ACL requests, time taken to

SUCCESS-6G: DEVISE Page 25 of 31 TSI-063000-2021-40

Version 1.0, 30/04/2025

identify the appropriate network element to POST the ACL (generated by Attack-Mitigator),
interoperability efficiency between TFS and underlay network elements. A detailed description of the
CDF for MTTD is shown in Figure 18.

Cumulative Probability

7.175 7.180 7.185 7.190 7.195 7.200
Time Elapsed (s)

Figure 18 Cumulative Mean Time taken to detect all attacks on the system

SUCCESS-6G: DEVISE Page 26 of 31 TSI-063000-2021-40

Version 1.0, 30/04/2025

4 Use case 2 proof-of-concept (PoC)

For the proof-of-concept of OTA vehicular software updates at the Circuit Parcmotor Castelloli, all
software, both server-side and on-board unit (OBU) software, has been migrated to their final
locations: the Castelloli server and the IDNEO-developed OBU installed in the test vehicle (Figure 19).

Cellnex server Seat Ateca vehicle

idneo VM 0OBU

New SW release LwM2M client (Anjay)
FOTA
LWM2M server J flashing
(Leshan) service

CoAP client
CoAP server
5G Celinex private
network
UDP 5685

Figure 19 PoC architecture for OTA vehicular software updates at Castelloli

During the third round of tests, the focus was on evaluating network connectivity and performance in
communications between the OBU and the Firmware Over-the-Air (FOTA) server. The assessment
included analyzing persistent connections, reconnection processes, failure scenarios, download times,
and network events that could potentially impact communication between the OBU application and
the FOTA server. Additionally, the use case involving software updates from the management
application was tested to ensure its functionality and reliability.

Below is the procedure followed to evaluate the use case. Figure 20 shows the dashboard used to
manage the devices. There were no devices registered on the dashboard initially. This dashboard is
generated by an application that, in addition to having a communications port, also has a web
management port. This application was containerized and deployed at the edge of the network.

LESHAN (=0 CLIENTS

Registered Clients earch Q

Reglstration Date -

Figure 20 LWM2M server deployed on the virtual machine waiting for connections

Once the OBU was powered on, the device registration process with the server was observed,
displaying the assigned endpoint name on the dashboard. Additionally, real-time logs from the client
application running on the device were monitored during the test. Simultaneously, network
communication packets were captured to facilitate further analysis of system performance and
connectivity.

SUCCESS-6G: DEVISE Page 27 of 31 TSI-063000-2021-40

Version 1.0, 30/04/2025

LESHAN [eO CLIENTS
Registered Clients Sear Q
Ciient Endpoint Registration ID Registration Date J, Last Update
VMAX-SUCCESS6G uCTqliBY6T Mar7,12:02:09 pm Mar 7,120254pm o8
Rowsperpage: 10 v Tof1

idneo@idneo: ~

jdneo@idneo: ~ 2280
2025 £3-0711162:09.095010 DO [anjay] [anjay_reload.c:152]: servers reloaded
% : server [6/1: transport change: (none) -> U (url: coaps://10.17.252.102:5684)
: no SNI for /6/1, using defaults
Could not restore session; performing full handshake
X : reconnected
©€9.788047 INFO [anjay] [anjay_register ttempting to register with LwM2M version 1.1
©€9.788553 INFO [anjay] [anjay_register.c:819]: Register sent
:02:09.809653 INFO [anjay] [anjay_register.c:622]: registration successful, location = /rd/uCTqIrsYsT

Figure 21 Top: Client connected to Server, Bottom: TCU console showing server logs

Within the management platform, relevant data can be obtained from the OBU. This information is
communicated between the OBU and the server via COAP communication encrypted with DTLS. A
relevant piece of information, which we can see in Figure 22, is the version of the release deployed on
the OBU.

E2EL [e0 CLIENTS

VMAX-SUCCESS6G 08 (=0 Device-v1.1 crears ogs ® @ R
Reg. ID: uCTqIrBY6ET
Registered: Mar 7, 12:02:09 pm
Updated: Mar 7, 12:04:25 pm

This LwM2M Object provides a range of device related information which can be queried by the LwM2M Server, and a device rebaot and factory reset function

Instance 0: oas Q [R w DELETE
Timeout : 58
Single Value : TLV - Manufacturer s ® @ R VMAX v
Multi Value : TLV - Model Number 0BS = (o] R demo-client v
.
— Serial Number 0BS = @ R SUCCESS6G v
= Composite Operations .
Firmware Version 0BS 2 @ R 380 v

fog_user@template: ~ - o @

B idneo@idneo: ~ 228x6
2025-83-07 11:02:09.809653 INFO [anjay] [injiy_rrgls!er c:622]: registration successful, location = /rd/uCTQIrBYET

2025-83-07 11:03:12.395464 DEBUG [anjay_dm] [anjay_dm_read.c:323]: Read /3/0/0

2625-83-67 11:63:15.241932 DEBUG [anjay_dn] [an]ay _dn_read.c:323]: Read /3/6/1

2025-83-07 11:03:18.245646 DEBUG [anjay_dn] [anjay_dm_read.c:323]: Read /3/6/2

2025-83-07 11:03:22.989633 DEBUG [anjay_dm] [anjay_dm_read.c:323]: Read /3/e/3 II

Figure 22 TCU and Server interaction, device data observation

Next, the server is instructed on the location of the file containing the new software version to be
deployed. For the server, this file is considered a resource that must be transmitted as a configurable
item. Prior to this step, the file was uploaded to a repository accessible via HTTPS, ensuring secure and
efficient retrieval during the update process.

Write "Package URI" Resource

Resource /5/0/1
Type : String

ACE

Range: 0..255

URI from where the device can download the firmware package by an alternative mechanism. As soon the
device has received the Package URI it performs the download at the next practical opportunity.

The URI format is defined in RFC 3986. For example, coaps://example.org/firmware is a syntactically valid
URI. The URI scheme determines the protocol to be used. For CoAP this endpoint MAY be a LwM2M Server
but does not necessarily need to be. A CoAP server implementing block-wise transfer is sufficient a

server hosting a firmware repository and the expectation is that this server merely serves as a separate file
server making firmware images available to LwM2M Clients.

string

https://10.17.252.102/files/vmax_release4.1.1ar.gz

WRITE CANCEL

Figure 23 Top: Software Release configuration for update, Bottom: Software Releases in HTTPS repository

SUCCESS-6G: DEVISE Page 28 of 31 TSI-063000-2021-40

Version 1.0, 30/04/2025

The file is deployed to the OBU, which downloads it once it has been instructed where to retrieve it.
Figure 24 shows the “firmware.fota” file, which contains the updated software and is stored on the
OBU's internal SD card. At this point, the Update button will be used to begin deploying the new
release, since in a real-world environment, this new release will be deployed when the system is
rebooted during an engine shutdown.

=]
Package W v
m Connectivity Monitoring
” Package URI oBs ® @ R W v
Firmware Update
/5 Update EXE i v
Q Location State s ® @ R 2 v
/6 L]
3 Connectivity Statistics Update Result 0BS = & R A 0 v
el
PkgName 0BS ® @ R v
||| LWM2M Cellular Connect...
n PkgVersion 0BS = (o R v
ﬂ LWM2M APN Connectio...
1 Firmware Update Protocol Support 0BS (] G R v
|0 Pertfolio Firmware Update Delivery Method 0BS) @ R 2 v
e []
N idneo@idneo: ~ 162x10
drux------ 2 root root 16.0K Jan 24 2024 lost+found
/mnt/sdcard # 1s -1h
total 97692
-FW-F--r-- 1 root root 95.4M Mar 7 11:15 firmware.fota
druxruxrwx 2 root root 4.0K Mar 7 11:13 fota
=FW-rW-rw- 1 root root 29 Mar 3 10:34 fota-client-deviceid.cfg
~rW-rW-rw- 1 root root 21 Nov 21 17:11 fota-client-params.cfg
-rW-rW-rw- 1 root root 23 Feb 21 16:59 fota-client-server.cfg
drux------ 2 root root 16.0K Jan 24 2024 lost+found |
/mnt/sdcard # |:| |

Figure 24 Top: Software Update User Interface, Bottom: Release Download to the TCU File System

Upon system reboot, the OBU executes a startup script that verifies whether a firmware update is
required. If an update is necessary, the script initiates the update process and ensures its completion.
Once the update is successfully applied, the OBU is expected to automatically reconnect to the edge
server, as illustrated in Figure 25.

Registered Clients Search Q i
Client Endpoint Registration 1D Registration Date Last Update
VMAX-SUCCESS6G c7MikM20J0 Mar7, 12:34:34 pm Mar 7, 12:34:57 pm [) ﬁ

Rows per page 0 - 110f1

idneo@idneo: ~

idneo@idneo: ~ 170x12
2025-03-07 11:33:25.675780 INFO [demo] [firmware_update.c:520]: *** FIRMWARE UPDATE: (null) #**
2025-83-07 11:33:25.675877 INFO [demo] [firmware_update.c:559]: *** Launching start-fota.sh script on reboot *##*
Rebooting.
idneo@idneo:~% adb shell
/ # journalctl -fu start-fota
-- Logs begin at Mon 2024-87-15 13:08:14 UTC. --
Jul 15 13:08:14 ag215scnaa start-fota.sh[729]: 2024-07-15 13:08:14.295589 INFO [anjay] [anjay_register.c:622]: registration successful, location = /rd/pSXy6JoWce

Mar ©7 11:34:34 ag215scnaa start-fota.sh[729]: 2025-83-07 11:34:34.972378 INFO [anjay] [anjay_register.c:869]: Attempting to register with LwM2M version 1.1
Mar 87 11:34:34 ag215scnaa start-fota.sh[729]: 2025-03-07 11:34:34.972510 INFO [anjay] [anjay_register.c:819]: Register sent
Mar 07 11:34:34 ag215scnaa start-fota.sh[729]: 2025-83-07 11:34:34.997126 INFO [anjay] [anjay_register.c:622]: registration successful, location = [rd/c7MikM203J0 I

Figure 25 Reboot and automatic reconnection to the LWM2M server

A further analysis is performed based on the captured network traffic. As illustrated in Figure 26, the
OBU, assigned the IP address 10.17.201.240, receives a reset command from the server at IP address
10.17.252.102. Following this, the OBU initiates a DTLS handshake to re-register with the network. This
event marks the completion of the update process.

: 08, 356023 10.17.252.102 10.17.201.240 DTLSvL.
108, 437927 10.17.201.240 10.17.252.102 DTLSv1.
:18,578533 10.17.201.248 10.17.252.182 DTLSv
:18,581575 10.17.252.102 16.17.201.240 DTLSv1
118,598391 10.17.201.240 10.17.252.102 DTLSv1
:18, 600996 10.17.252.182 168.17.201. 240 DTLSv
:18,618425 10.17.201.240 16.17.252.1082 DTLSv1.
120:18,620141 10.17.252.102 10.17.201.240 DTLSvL.

103 Application Data

97 Application Data

573 Client Hello

108 Hello Verify Request

573 Client Hello

179 Server Hello, Server Hello Done

152 Client Key Exchange, Change Cipher Spec, Encrypted Handshake Message
123 Change Cipher Spec, Encrypted Handshake Message

RSN ERRN RN

Figure 26 TCU offline while pe}forming reboot and update =3 min 10 s

SUCCESS-6G: DEVISE Page 29 of 31 TSI-063000-2021-40

Version 1.0, 30/04/2025

5 Conclusions

Ensuring the security of OTA vehicular software updates is essential to protect vehicles from cyber
threats and unauthorized modifications. The SUCCESS-6G-DEVISE framework demonstrates the
effectiveness of Al-driven security policies, network slicing, and SECaa$ in mitigating risks associated
with OTA updates. The validation results show a significant reduction in security vulnerabilities,
enhancing overall trust in the software update process. As cybersecurity threats continue to evolve,
ongoing research into Al-driven threat detection, blockchain-based verification, and real-time anomaly
monitoring will be critical in maintaining the integrity and resilience of vehicular software updates.

One of the key challenges in secure OTA updates is maintaining end-to-end encryption while
minimizing performance trade-offs. The use of blockchain-based verification techniques ensures that
software packages remain tamper-proof throughout the update process. By leveraging distributed
ledger technology, updates can be validated across multiple nodes, reducing the risk of data breaches
and unauthorized alterations.

Additionally, integrating Al-driven threat detection mechanisms enhances the real-time security
posture of the update ecosystem. By continuously monitoring network activity and analyzing
behavioral anomalies, the system can proactively identify and mitigate potential cyber threats. Future
advancements should focus on expanding adaptive security frameworks that dynamically respond to
emerging attack vectors, ensuring robust protection against evolving cyber risks.

SUCCESS-6G: DEVISE Page 30 of 31 TSI-063000-2021-40

Version 1.0, 30/04/2025

6 References

Abishek A, Vilalta R, Gifre L, Alemany P, Manso C, Casellas R, Martinez R, Muioz R. Network Extensions
to Support Robust Secured and Efficient Connectivity Services for V2X Scenario. In2024 24th
International Conference on Transparent Optical Networks (ICTON) 2024 Jul 14 (pp. 1-4). IEEE.

Vilalta R, Via S, Mira F, Casellas R, Muinoz R, Alonso-Zarate J, Kousaridas A, Dillinger M. Control and
management of a connected car using sdn/nfv, fog computing and yang data models. In2018 4th IEEE
Conference on Network Softwarization and Workshops (NetSoft) 2018 Jun 25 (pp. 378-383). IEEE.

Muioz R, Vilalta R, Yoshikane N, Casellas R, Martinez R, Tsuritani T, Morita |. Integration of loT,
transport SDN, and edge/cloud computing for dynamic distribution of loT analytics and efficient use of
network resources. Journal of Lightwave Technology. 2018 Apr 1;36(7):1420-8.

Asensio-Garriga, R. et al., "ZSM-Based E2E Security Slice Management for DDoS Attack Protection in
MEC-Enabled V2X Environments," in IEEE Open Journal of Vehicular Technology, vol. 5, pp. 485-495,
2024

Fallgren M, Dillinger M, Alonso-Zarate J, Boban M, Abbas T, Manolakis K, Mahmoodi T, Svensson T,
Laya A, Vilalta R. Fifth-generation technologies for the connected car: Capable systems for vehicle-to-
anything communications. IEEE vehicular technology magazine. 2018 Jul 17;13(3):28-38.

Garg S, Kaur K, Kaddoum G, Ahmed SH, Jayakody DN. SDN-based secure and privacy-preserving scheme
for vehicular networks: A 5G perspective. IEEE Transactions on Vehicular Technology. 2019 May
20;68(9):8421-34.

Varma IM, Kumar N. A comprehensive survey on SDN and blockchain-based secure vehicular networks.
Vehicular Communications. 2023 Aug 22:100663.

Meyer P, Hackel T, Langer F, Stahlbock L, Decker J, Eckhardt SA, Korf F, Schmidt TC, Schiippel F. A
security infrastructure for vehicular information using sdn, intrusion detection, and a defense center
in the cloud. In2020 IEEE Vehicular Networking Conference (VNC) 2020 Dec 16 (pp. 1-2). IEEE.

SUCCESS-6G: DEVISE Page 31 of 31 TSI-063000-2021-40

