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Executive Summary

Dependable measurement data are essential for the accuracy and integrity of vehicular state
estimation by the maintenance center which performs condition monitoring tasks. However, vehicular
networks are often subject to missing sensor observations due to -among others- channel
stochasticity, hardware failures, and security attacks. In this deliverable, we study the problem of
missing data in the vehicular measurement streams. We discuss the mechanisms that causally induce
occlusions and investigate the ability of interpretable dynamical systems i) to fit the observed data at
the aggregation point, and ii) to impute missing values by extracting knowledge from the
spatiotemporal synergy among the ambient vehicular measurement space. A rigorous assessment of
various missing data configurations based on empirical evaluations reveals meaningful performance
trends for model fitting and recovery of incomplete information.
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1 Introduction

The acquisition of dependable measurement data is essential for the accuracy and integrity of
vehicular state estimation by the maintenance center. Data aggregation points located at the network
edge combine vehicular measurement trajectories captured at different locations and time instances
to describe the evolution of vehicular state and model the rich interactions between quantities that
co-evolve in time. However, vehicular networks are often subject to missing sensor observations due
to the innate randomness of the wireless channel, hardware/equipment failures, security attacks, etc.
Incompleteness in the aggregated data unavoidably affects the downstream processing tasks, leading
to incomplete vehicular state knowledge posing risks in effective decision-making.

In this deliverable, we study the problem of missing data in the vehicular measurement streams. We
discuss the mechanisms which causally induce occlusions (Section 2) and investigate the ability of
interpretable dynamical systems i) to fit the observed data at the aggregation point, and ii) to impute
missing values by extracting knowledge from the spatiotemporal synergy among the ambient vehicular
measurement space (Section 3). A rigorous assessment of various missing data configurations based
on empirical evaluations reveals meaningful performance trends for model fitting and recovery of
incomplete information.
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2  The problem of missing data

The aggregation of vehicular measurement streams constitutes an essential task in the value chain of
vehicular networks and directly determines the integrity of the transmitted data and the resiliency of
the acquisition infrastructure. Data aggregation points deployed at the edge combine measurement
trajectories captured at different locations and time instances to describe the evolution of vehicular
monitoring information to model the rich interactions between characteristics/variables that co-
evolve in time [1] [2] [3].

Nevertheless, a key challenge for efficient vehicular data fusion and subsequent knowledge extraction
resides in the completeness of aggregated information. In practice, the emergence of missing data in
the fused vehicular measurement streams is inevitable. Missing information can be generally
attributed to the following factors:

e Hardware failures: The malfunction of hardware components (e.g., synchronization failures or
errors in sensor readings) may result in persistent missing observations for one or multiple
state variables of the vehicle. In the case of interconnected in-vehicle systems, hardware
failures may inadvertently occur in a cascade, where neighbouring sensors become
progressively compromised in a short period. Cascade data occlusions with temporal
dependency often become challenging to deal with, and they may hinder the effectiveness of
reconstruction techniques.

e Connectivity issues: The imperfections of the underlying vehicular connectivity constitute an
inseparable aspect of the data acquisition procedure. For example, the unreliable nature of
the shared wireless medium may result in connectivity outages and packet losses for
consecutive time-steps. The induced signal distortion leads to aggregated data inconsistencies
and partial observability of the vehicular condition which, in turn, may adversely affect
inference methods.

e Security attacks: The pervasive digitalization of vehicular systems introduces vulnerabilities
and threat vectors, opening entirely new questions from a security and privacy perspective.
Across all stages of the data acquisition chain, an increased number of entry points becomes
available for potential adversaries to exploit and execute malicious attacks. For example,
systematic modification of monitoring information and zero-injection measurements may
perniciously mislead the monitoring operation of the vehicles.
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3 Methods to recover/reconstruct missing information

3.1Imputation problem as a dynamic Bayesian network

Dynamical systems offer an interpretable mathematical framework to i) learn the hidden patterns of
time-series sensor data which exhibit high spatiotemporal correlation and ii) mine their underlying
dynamics to gain insight into the evolution of the process being monitored. As such, dynamical systems
provide an effective means for imputation of missing data and compression of the aggregated content
at a fusion center.

At the aggregation point located at each vehicular edge node, the received measurements can be
represented by a partially observable time sequence Y = [y,,¥,, ...,yr], Where each vector y,
contains the received measurements at time-step t from the deployed sensors. The stochastic nature
of the wireless channel may result in a received vector y; with intermittent measurements. We
consider a time sequence of latent variables (i.e., hidden states) Z = [z, Z,, ..., Zr] to model the
dynamics and the hidden patterns of the received measurements. We also introduce an indicator
matrix, ¢, for the missing measurements, i.e., ¢, = 0 whenever the k-th sensor measurement iny,
is missing at time t; otherwise, ¢, = 1. Let us also denote the observed part of Y as Y, and the
missing part as Y,,,. Following the rationale of linear dynamical systems [4], our model for the received
measurements at the fusion center can be described by the following two equations:

Zeyp = Az +wy, €Y
Ve =Cz+v,. (2)

To capture temporal correlation, we assume that the latent variables at each time tick depend linearly
on the previous values via the linear state transition matrix A. At each time tick, the received vector
¥, including both observed and missing sensor measurements, is assumed to be a linear function of
the latent variables z; via the linear projection matrix C. This mapping implicitly captures the spatial
correlation among the different sensor measurements [5]. Both hidden state evolution and received
measurement processes are corrupted by zero-mean white Gaussian noise, w; and v;, with covariance
matrices, Q and R, respectively. Further, w, and v; are assumed to be independent. The initial state
zy of the latent variables is also a Gaussian random variable with mean m; and covariance V;.
Therefore, the parameter vector of our modelis 8 = (4,C,Q, R, w1, V7).

Based on Egs. (1) and (2), we can express the conditional probabilities for the hidden state and the
received sequence, respectively, as follows:

1 Ky 1
PG 1200 = exp {~5 DG Az, O} 2 2l0I2 )
1 Ky 1
P(y: | z,) = exp {_ED(Yt»CZt,R)} (2m) 2|R| z, 4)

where D(w¢, 1, E) = (w; — )71 (w, — pe) denotes the square of the Mahalanobis distance of a
vector w; with mean vector y; and covariance matrix Z.

Based on the Markov property implicit in the model, the factored representation of the joint
probability distribution of Z and Y is given by

T T
PZY10)=P@)| | P@iz ]| [Poiiz )
t=2 t=1

and the joint log-likelihood can be written as
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1
log P(Z,Y | 0) = —E(D(Z1»7T1'V1) —log |V;| — T(k;q + K3)log 2m)

D)

t=2

T-1
2

1
(ED(Zt'AZt—li Q)) - IOg |Q|

T

—Z Dy Czo R) ) — —loglRI. (6)
2 Yo CZ, ) gln].

t=1

Given that the received sequence Y is characterized by intermittent measurements due to imperfect
cellular connectivity, our goal is to maximize the conditional expectation of the received data log-
likelihood, i.e.,

L(6) = Ey,, zv, ¢[log P(Z,Y 1 8)]. (7)

To that aim, we apply an iterative expectation maximization (EM) algorithm following a coordinate
descent procedure [6]. We provide the details in the following subsection.

3.1.1 The EM algorithm
3.1.1.1 Overview

The EM algorithm is a general iterative algorithm for maximum likelihood estimation in incomplete-
data problems [1]. The range of problems that can be addressed by EM is remarkably broad and
includes maximum likelihood for problems not usually considered to involve missing data, such as
variance-component estimation and factor analysis [7]. The EM algorithm formalizes a relatively old
ad hoc idea for handling missing data: i) replace missing values by estimated values, ii) estimate
parameters, iii) re-estimate the missing values assuming the new parameter estimates are correct., iv)
re-estimate parameters, and so forth, iterating until apparent convergence. Each iteration of EM
consists of an expectation step (E-step) and a maximization step (M-step). The M step is particularly
simple to describe: perform maximum likelihood estimation of 8 just as if there were no missing data,
that is, as if they had been filled in. The E-step finds the conditional expectation of the missing data
given the observed data and current estimated parameters, and then substitutes these expectations
for the missing data. We provide the details in the following.

3.1.1.2 The E step and the M step of EM

The EM algorithm provides an iterative method for finding the maximum likelihood estimates of 8
based on the observed measurements, Y,, by successively maximizing Eq. (7). The E-step of EM
algorithm requires computing L(8) in Eq. (7). Based on Eq. (6), this computation amounts to deriving
the following three expectations:

Z; =E[z;1Y], 3
P, =E[zz; Y], €))
Pir1 = Elz,z;_1 | Y]. (10)

Let z and V[ denote E(z, | Y[) and Var (z, | Y1), respectively, for the subsequence of received
measurements until time 7. Note that z} = m; and V§ = V. Let also @ be an initialization of the
parameter vector. The conditional expectations in Egs. (8)-(10) can be expressed as

2, =1z, (11)
P, =VIi+ thth', (12)
Py 1 = VtTt—l + Zzzz—1 . (13)
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and their computation can be decomposed into the following sets of forward and backward recursion:
i) Forward recursion:

zi™t = AztTd, (14)

Vit = AvitA +Q, (15)

K, =viic'(cviic' + R, (16)

Zg = Zg_l + K (y: — CZg_l); 17)

Vi =VvEt - K evit (18)

ii) Backward recursion:

Jt-1 = Vt—_llA’(Vtt_l)_l: (19)
z;_y =2z{21+]_1(z] —Az{7]), (20)
Viey =VEM+ ] (V= VED, (21)

VtT—l,t—Z = Vtt—_11]£—2 +]t—1(VtTt—1 - AVtt—_11)]£—2’ (22)
where Eq. (22) is initialized as V _; = (I — K;C)AVi_{.
After calculating the conditional expectations of the latent variables (E-step), the M-step re-estimates
the parameter vector 8 to be used in the E-step. To estimate 6 = (4,C,Q, R, my,V;), we take the
respective partial derivative of Eq. (7), set to zero, and solve for the value of each respective parameter.

In particular, the updated parameters are computed as follows:

i) Projection matrix:

T T
oL —1y, 4/ -1
% =_ZR ytZt+ZR CPt=O,
t=1 t=1
T T -1
crew = (Z ytzg) (Z Pt> . (23)
t=1 t=1
ii) Measurement noise covariance:
T
oL T 1 , ., 1 ,
OR-1 = ER _tzl (53’th — CZy; +§CPtC ) =0,
&
R = ;Z (yeye — C*V2eyp). 29
t=1
iii) State transition matrix:
T T
oL 1 1
74 =—;Q Pt,t—1+tZZQ AP, =0,
- T (25)
AN = (Z Pt,t—l) <z Pt—1> :
t=2 t=2

iv) State noise covariance:

SUCCESS-6G-EXTEND Page 11 of 17 TSI-063000-2021-39/40/41



Version 1.0, 14/02/2024

t=2 t=2
1 T
Qe = 1(2 P—are Pt_1t> (26)
t=2 t=2
v) Initial state mean:
oL vl ) =0
om, L ATmI=D 27
v =12
vi) Initial state covariance:
oL ! % ! (P — 2,m; 7, + D=0
— ==V, —= —Zymy — M2 +mymy) =0,
6V1_1 2 1 2 1 17%1 141 1/¢1 (28)
Vlnew = P1 - 2121.

Finally, using the Markov property, the missing sensor measurements Y,,, can be computed from the
estimation of the latent variables as

ElYm | ¥, Z;0] = C"™ E[Zl(th, prie =01 (29)

The Egs. (8)-(22) (E-step) and Egs. (23)-(28) (M-step) complete one iteration of the EM algorithm; these
equations are alternated repeatedly until the difference L(8"*") — L(8°'%) changes by an arbitrary
small amount €.

An alternative procedure can be followed based on Bayesian updates using sampling by setting
conjugate prior distributions over all parameters [8]. This method provides the added benefit of
uncertainty quantification based on computed position densities over the parameter space. The
computation is carried out by Gibbs sampling, which constitutes an iterative Markov chain Monte Carlo
(MCMC) scheme [9]. Missing values can be iteratively imputed by computing their conditional
expectation with respect to the values of observed measurements, the posterior expectations of latent
variables and the updated parameter values.

3.2 Performance assessment
3.2.1 Dataset description

The VeReMi dataset [10] includes 19 misbehaviour attack types and models two road traffic densities:
high-density (37.03 Vehicles/km2) and low-density (16.36 Vehicles/km2). A log file per vehicle is
generated which contains basic safety messages (BSM) transmitted by neighbouring vehicles over its
entire trajectory. Each attack type dataset contains a ground truth file to record the observed
behaviour of all participating vehicles. BSMs constitute a three-dimensional vector for position, speed,
acceleration and heading angle features. Figure 1 depicts a raw sample of BSM data for a single vehicle.
For subsequent imputation analysis, we have considered the log file for a single vehicle and kept only
the genuine information by properly removing the misbehaving attack data, since the attack detection
and classification are considered irrelevant tasks to our problem. Synthetic dropouts are then used to
generate missing data by uniformly selecting space-time points for occlusion.
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type sendTime sender senderPseude messagelD pos spd acl hed
[0.063269582720791,
[1393.9276845310885, [0.049400297 340067005, [0.166603725521922,
o 4 EHDILEEE & =02 21062 1203.692849621629, 0.0] -0.686074278731542, 0.0] -2.313798731172836, 0.0] 70'9979964?28907209[1]]’
[0.063269582720791,
[1393.9276845310885, [0.049400297 340067005, [0.166603725521922,
12 4 25210436332 3 10332 21595 1203.692849621629, 0.0] -0.686074278731542, 0.0] -2.313798731172836, 0.0] '0'9979%4728907209(1)]’
[0.0632698582720791,
[1393.9276845310885, [0.049400297 340067005, [0.166603725521922,
24 4 SRR & ez ez 1203.692849621629, 0.0] -0.686074278731542, 0.0] -2.313798731172836, 0.0] 70'9979964?28907209[1]]’
[0.063269582720791,
[1393.9276845310885, [0.049400297 340067005, [0.166603725521922,
% 4 25210.936332 3 10332 21696 1203.692849621629, 0.0] -0.686074278731542, 0.0] -2.3137987311728386, 0.0] '0'9979964?28907209(1]]’
[1394.1720072035407, [0.183983214273645, [0.158360368223177, [0.063269582720943,
27 4 ZFATALRRE &= g2 SR 1201.94700381985, 0.0] -2.555169745474803, 0.0] -2.199314281648395, 0.0] -0.99799647289072, 0.0]
[-8.275102433876064 [-0.9703792835172421
[127.9440058255349, [ : [4.492259181435928, ’
7165 4 25368936332 a3 10332 715829 885 9631063084606, 0 0] -0 4862816E!’;!(535959003i 0.263999685982995, 0.0] 0,24158651891312900[2]],
[122.01926718688862 [-2.793979120628686, [4.49260375347267, [-0.97319958556753991,
7179 4 25369.186332 33 10332 716850 . 4 -0.21788847407861803, 0.25802779102927603, 0.22996209825940903,
885.6254381946134, 0.0]
0.0] 0.0] 0.0]
[122 01936718688863 [-3.793979120628686, [4.49260375347267, [-0.9731995855753991,
7192 4 25369436332 33 10332 717806 B e -0.21788847407861903, 0.25802779102927603, 0.22996209825340903,
885.6254381946134, 0.0]
0.0] 0.0] 0.0]
[122.01926718688863 [-3.793979120628686, [4.49260375347267, [-0.9731995855753991,
7205 4 25369.686332 33 10332 718725 . : -0.21788847407861903, 0.25802779102927603, 0.22996209825940903,
885.6254381946134, 0.0]
0.0] 0.0] 0.0]
[122 01936718688863 [-3.793979120628686, [4.49260375347267, [-0.9731995855753991,
7228 4 25369936332 33 10332 720286 B 2 -0.21788847407861903, 0.25802779102927603, 0.22996209825340903,
885.6254381946134, 0.0] 0.0] 0.0] 0.0]

640 rows x 9 columns

Figure 1: BSM data for a specific vehicle (ID:33) in VeReMi
3.2.2 Results

In this section, we aim to validate our proposed imputation method described in Section 3.1 against
simulation results and provide a performance evaluation in terms of reconstruction error. In our
proposed scheme, we initialize our estimated received time sequence Y with Y, while the missing
sensor measurements are initially reconstructed by means of linear interpolation and then iteratively
imputed as in Eqg. (29). The process continues by updating the expectations of the latent variables
based on the newly imputed values of the missing measurements until convergence. We further
assume that the noise covariances in 6 constitute diagonal matrices.

The effectiveness of reconstruction is evaluated in terms of the mean squared error (MSE), defined as
the average of the squared differences between the real and reconstructed missing measurements,
i.e.,

1

MSE (Y, ®,Y) = —Zt,k (1 = ¢t'k)

> (1= b Ve = i)™
tk

To reduce random effects, we repeat each simulation 100 times and we report the average of the MSE.

Table 1 shows the imputation performance in terms of MSE for randomly missing values among
measurement streams and time-steps. It can be observed that the proposed imputation method is
capable of drawing insight from the received measurement values to make valid inferences for the
missing data. Imputation performance expectedly registers a decline with rising percentage of missing
entries in the aggregation point, albeit not at prohibitive levels.

Missing values % (x100)

0.25 0.3 0.35 0.4 0.45 0.5

0.05 ‘ 0.1 ‘ 0.15 0.2
0.036 | 0.039 | 0.04 | 0.042 | 0.043

MSE 0.045 | 0.046 | 0.048 | 0.051 | 0.055

Table 1: Imputation performance for varying percentage of missing measurements
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In the following, we have conducted two types of experiments, investigating primarily the effect of
ensuing occlusions: (a) we randomly opted for 1, 2, and 3 measurement streams to exhibit consecutive
missing values of varying length starting at a random point in time (Tables 2-4, respectively); and (b)
we opted for all measurement streams to report missing values for different scenarios of length of
ensuing occlusions (Table 5).

Occlusion length

20‘30‘40‘50‘60
MSE 0.0049 | 0.0052 | 0.0057 | 0.0064 | 0.0069 | 0.0076 | 0.0088 | 0.01 | 0.0144 | 0.0171

MSE 0.011 | 0.0115 | 0.0118 | 0.0121 | 0.0126 | 0.013 | 0.0137 | 0.0144 | 0.0151 | 0.0178

MSE 0.013 | 0.0144 | 0.0156 | 0.0164 | 0.0173 | 0.018 | 0.0199 | 0.0225 | 0.0263 | 0.0299

MSE 0.0784 | 0.083 | 0.091 | 0.1089 | 0.133 | 0.188 | 0.224 | 0.252 | 0.391 | 0.54

Table 5: Imputation performance for varying occlusion length with all missing measurement streams

We observe that reconstruction of missing values in the case of experiment (a) does not suffer from
the limitations imposed by potentially unfavourable network conditions causing occlusions. The
imputation mechanism takes advantage of spatiotemporal correlations based on the received
measurement streams which are consistent with the underlying physical process. Nevertheless, the
recovery of missing vehicular information in experiment (b) suffers from the fact that in the absence
of any measurement stream for an extended period of time there is non-existent spatial information
in each time-step for the dynamical model to exploit. Moreover, the temporal information is limited
to the relatively distant time-steps with recorded measurement values. Hence, the predicted values
are mainly influenced by the outcome of linear interpolation from the initial stage of data imputation
process, registering significant mismatch with respect to the ground truth values.

3.3 The potential of deep learning solutions

In the context of SUCCESS-6G, we also aim to summarize state-of-the-art guidelines for deep learning
topology design and hyper parameter tuning in data imputation problems. We will implement a
general approach in PyTorch framework and extend it to two implementations of (i) variational
autoencoders and (ii) Generative Adversarial Imputation Networks (GAINs). We will define a set of
scenarios reflecting possible real-world issues when the measurements are not being received or the
sensors stop working. We will define a base classifier and compare its results on (i) the original dataset
and (ii) imputed dataset in each scenario. The performance will be compared to the elementary

SUCCESS-6G-EXTEND Page 14 of 17 TSI-063000-2021-39/40/41



Version 1.0, 14/02/2024

imputation techniques, e.g., rolling average/min/max/, etc. Regarding the applicability of variational
autoencoders in data imputation tasks, we aim to extend the work of the authors in [11] by (i)
proposing guidelines on deep net design, (ii) thorough comparison to other available methods and (iii)
application of the method on the real-world datasets provided by IDNEO.
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4 Conclusions

In this deliverable, we have explored the ability of dynamical systems to mine measurement streams
under incomplete received trajectories. Using an open-source dataset, and creating synthetic
dropouts, we have evaluated the reconstruction error for different missing data configurations. The
proposed imputation method is capable of extracting knowledge from the spatiotemporal synergy
among the respective trajectories to make valid inferences for the missing data. Imputation
performance expectedly registers a decline with rising percentage of missing entries in the aggregation
point, albeit not at prohibitive levels.
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