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Executive Summary 

Dependable measurement data are essential for the accuracy and integrity of vehicular state 
estimation by the maintenance center which performs condition monitoring tasks. However, vehicular 
networks are often subject to missing sensor observations due to -among others- channel 
stochasticity, hardware failures, and security attacks. In this deliverable, we study the problem of 
missing data in the vehicular measurement streams. We discuss the mechanisms that causally induce 
occlusions and investigate the ability of interpretable dynamical systems i) to fit the observed data at 
the aggregation point, and ii) to impute missing values by extracting knowledge from the 
spatiotemporal synergy among the ambient vehicular measurement space. A rigorous assessment of 
various missing data configurations based on empirical evaluations reveals meaningful performance 
trends for model fitting and recovery of incomplete information. 
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1 Introduction  

The acquisition of dependable measurement data is essential for the accuracy and integrity of 
vehicular state estimation by the maintenance center. Data aggregation points located at the network 
edge combine vehicular measurement trajectories captured at different locations and time instances 
to describe the evolution of vehicular state and model the rich interactions between quantities that 
co-evolve in time. However, vehicular networks are often subject to missing sensor observations due 
to the innate randomness of the wireless channel, hardware/equipment failures, security attacks, etc. 
Incompleteness in the aggregated data unavoidably affects the downstream processing tasks, leading 
to incomplete vehicular state knowledge posing risks in effective decision-making. 

In this deliverable, we study the problem of missing data in the vehicular measurement streams. We 
discuss the mechanisms which causally induce occlusions (Section 2) and investigate the ability of 
interpretable dynamical systems i) to fit the observed data at the aggregation point, and ii) to impute 
missing values by extracting knowledge from the spatiotemporal synergy among the ambient vehicular 
measurement space (Section 3). A rigorous assessment of various missing data configurations based 
on empirical evaluations reveals meaningful performance trends for model fitting and recovery of 
incomplete information. 
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2 The problem of missing data 

The aggregation of vehicular measurement streams constitutes an essential task in the value chain of 
vehicular networks and directly determines the integrity of the transmitted data and the resiliency of 
the acquisition infrastructure. Data aggregation points deployed at the edge combine measurement 
trajectories captured at different locations and time instances to describe the evolution of vehicular 
monitoring information to model the rich interactions between characteristics/variables that co-
evolve in time [1] [2] [3]. 

Nevertheless, a key challenge for efficient vehicular data fusion and subsequent knowledge extraction 
resides in the completeness of aggregated information. In practice, the emergence of missing data in 
the fused vehicular measurement streams is inevitable. Missing information can be generally 
attributed to the following factors: 

• Hardware failures: The malfunction of hardware components (e.g., synchronization failures or 
errors in sensor readings) may result in persistent missing observations for one or multiple 
state variables of the vehicle. In the case of interconnected in-vehicle systems, hardware 
failures may inadvertently occur in a cascade, where neighbouring sensors become 
progressively compromised in a short period. Cascade data occlusions with temporal 
dependency often become challenging to deal with, and they may hinder the effectiveness of 
reconstruction techniques. 

• Connectivity issues: The imperfections of the underlying vehicular connectivity constitute an 
inseparable aspect of the data acquisition procedure. For example, the unreliable nature of 
the shared wireless medium may result in connectivity outages and packet losses for 
consecutive time-steps. The induced signal distortion leads to aggregated data inconsistencies 
and partial observability of the vehicular condition which, in turn, may adversely affect 
inference methods. 

• Security attacks: The pervasive digitalization of vehicular systems introduces vulnerabilities 
and threat vectors, opening entirely new questions from a security and privacy perspective. 
Across all stages of the data acquisition chain, an increased number of entry points becomes 
available for potential adversaries to exploit and execute malicious attacks. For example, 
systematic modification of monitoring information and zero-injection measurements may 
perniciously mislead the monitoring operation of the vehicles. 
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3 Methods to recover/reconstruct missing information 

3.1 Imputation problem as a dynamic Bayesian network 

Dynamical systems offer an interpretable mathematical framework to i) learn the hidden patterns of 
time-series sensor data which exhibit high spatiotemporal correlation and ii) mine their underlying 
dynamics to gain insight into the evolution of the process being monitored. As such, dynamical systems 
provide an effective means for imputation of missing data and compression of the aggregated content 
at a fusion center.  
 
At the aggregation point located at each vehicular edge node, the received measurements can be 
represented by a partially observable time sequence 𝐘 = [𝐲1, 𝐲2, … , 𝐲𝑇], where each vector 𝐲𝑡 
contains the received measurements at time-step 𝑡 from the deployed sensors. The stochastic nature 
of the wireless channel may result in a received vector 𝐲𝑡 with intermittent measurements. We 
consider a time sequence of latent variables (i.e., hidden states) 𝐙 = [𝐳1, 𝐳2, … , 𝐳𝑇] to model the 
dynamics and the hidden patterns of the received measurements. We also introduce an indicator 
matrix, 𝜙, for the missing measurements, i.e., 𝜙𝑡,𝑘 = 0 whenever the 𝑘-th sensor measurement in 𝐲𝑡 

is missing at time 𝑡; otherwise, 𝜙𝑡,𝑘 = 1. Let us also denote the observed part of 𝐘 as 𝐘𝑟 and the 
missing part as 𝐘𝑚. Following the rationale of linear dynamical systems [4], our model for the received 
measurements at the fusion center can be described by the following two equations: 

𝐳𝑡+1  = 𝐴𝐳𝑡 + 𝐰𝑡 , (1)
𝐲𝑡  = 𝐶𝐳𝑡 + 𝐯𝑡.          (2)

 

To capture temporal correlation, we assume that the latent variables at each time tick depend linearly 
on the previous values via the linear state transition matrix 𝐴. At each time tick, the received vector 
𝑦𝑡, including both observed and missing sensor measurements, is assumed to be a linear function of 
the latent variables z𝑡 via the linear projection matrix 𝐶. This mapping implicitly captures the spatial 
correlation among the different sensor measurements [5]. Both hidden state evolution and received 
measurement processes are corrupted by zero-mean white Gaussian noise, 𝐰𝑡 and v𝑡, with covariance 
matrices, 𝑄 and 𝑅, respectively. Further, 𝐰𝑡 and 𝐯𝑡 are assumed to be independent. The initial state 
z0 of the latent variables is also a Gaussian random variable with mean 𝜋1 and covariance 𝑉1. 
Therefore, the parameter vector of our model is 𝜃 = (𝐴, 𝐶, 𝑄, 𝑅, 𝜋1, 𝑉1). 

Based on Eqs. (1) and (2), we can express the conditional probabilities for the hidden state and the 
received sequence, respectively, as follows: 

𝑃(𝐳𝑡 ∣ 𝐳𝑡−1) = exp {−
1

2
𝐷(𝐳𝑡 , 𝐴𝐳𝑡−1, 𝑄)} (2𝜋)−

𝜅1
2 |𝑄|−

1
2, (3)

𝑃(𝐲𝑡 ∣ 𝐳𝑡) = exp {−
1

2
𝐷(𝐲𝑡 , 𝐶𝐳𝑡 , 𝑅)} (2𝜋)−

𝜅2
2 |𝑅|−

1
2,                  (4)

 

where 𝐷(𝝎𝑡, 𝝁𝑡 , Ξ) = (𝝎𝑡 − 𝝁𝑡)′Ξ−1(𝜔𝑡 − 𝝁𝑡) denotes the square of the Mahalanobis distance of a 
vector 𝜔𝑡 with mean vector 𝜇𝑡 and covariance matrix Ξ. 

Based on the Markov property implicit in the model, the factored representation of the joint 
probability distribution of Z and Y is given by 

𝑃( 𝐙, 𝐘 ∣ 𝜃 ) = 𝑃(𝐳1) ∏  

𝑇

𝑡=2

𝑃(𝐳𝑡 ∣ 𝐳𝑡−1) ∏  

𝑇

𝑡=1

𝑃(𝐲𝑡 ∣ 𝐳𝑡)       (5) 

and the joint log-likelihood can be written as 
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log 𝑃(𝐙, 𝐘 ∣ 𝜃) =  −
1

2
(𝐷(𝐳1, 𝜋1, 𝑉1) − log |𝑉1| − 𝑇(𝜅1 + 𝜅2)log 2𝜋)

 − ∑  

𝑇

𝑡=2

 (
1

2
𝐷(𝐳t, 𝐴𝐳t−1, 𝑄)) −

𝑇 − 1

2
log |𝑄|

 − ∑  

𝑇

𝑡=1

 (
1

2
𝐷(𝐲t, 𝐶𝐳t, 𝑅)) −

𝑇

2
log|𝑅|.  (6)

 

Given that the received sequence 𝐘 is characterized by intermittent measurements due to imperfect 
cellular connectivity, our goal is to maximize the conditional expectation of the received data log-
likelihood, i.e., 

𝐿(𝜃) = 𝐸𝐘𝑚,𝐙∣𝐘𝑟,𝜙[log 𝑃( 𝐙, 𝐘 ∣ 𝜃 )].   (7) 

To that aim, we apply an iterative expectation maximization (EM) algorithm following a coordinate 
descent procedure [6]. We provide the details in the following subsection. 

3.1.1 The EM algorithm 

3.1.1.1 Overview 

The EM algorithm is a general iterative algorithm for maximum likelihood estimation in incomplete-
data problems [1]. The range of problems that can be addressed by EM is remarkably broad and 
includes maximum likelihood for problems not usually considered to involve missing data, such as 
variance-component estimation and factor analysis [7]. The EM algorithm formalizes a relatively old 
ad hoc idea for handling missing data: i) replace missing values by estimated values, ii) estimate 
parameters, iii) re-estimate the missing values assuming the new parameter estimates are correct., iv) 
re-estimate parameters, and so forth, iterating until apparent convergence. Each iteration of EM 
consists of an expectation step (E-step) and a maximization step (M-step). The M step is particularly 
simple to describe: perform maximum likelihood estimation of 𝜃 just as if there were no missing data, 
that is, as if they had been filled in. The E-step finds the conditional expectation of the missing data 
given the observed data and current estimated parameters, and then substitutes these expectations 
for the missing data. We provide the details in the following. 

3.1.1.2 The E step and the M step of EM 

The EM algorithm provides an iterative method for finding the maximum likelihood estimates of 𝜃 
based on the observed measurements, 𝐘𝑟, by successively maximizing Eq. (7). The E-step of EM 
algorithm requires computing 𝐿(𝜃) in Eq. (7). Based on Eq. (6), this computation amounts to deriving 
the following three expectations: 

𝐳̂𝑡  ≡ 𝐸[𝐳𝑡 ∣ 𝐘],                (8)

𝑃𝑡  ≡ 𝐸[𝐳𝑡𝐳𝑡
′ ∣ 𝐘],            (9)

𝑃𝑡,𝑡−1  ≡ 𝐸[𝐳𝑡𝐳𝑡−1
′ ∣ 𝐘].      (10)

 

Let 𝐳𝑡
𝑇 and 𝑉𝑡

𝑇 denote 𝐸(𝐳𝑡 ∣ 𝑌1
𝑇) and Var (𝐳𝑡 ∣ 𝑌1

𝑇), respectively, for the subsequence of received 
measurements until time 𝜏. Note that 𝐳0

1 = 𝜋1 and 𝑉0
1 = 𝑉1. Let also 𝜃 be an initialization of the 

parameter vector. The conditional expectations in Eqs. (8)-(10) can be expressed as 

𝐳̂𝑡  = 𝐳𝑡
𝑇 ,                              (11)

𝑃𝑡  = 𝑉𝑡
𝑇 + 𝐳𝑡

𝑇𝐳𝑡
𝑇′

,             (12)

𝑃𝑡,𝑡−1  = 𝑉𝑡,𝑡−1
𝑇 + 𝐳𝑡

𝑇𝐳𝑡−1
𝑇  ′.   (13)
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and their computation can be decomposed into the following sets of forward and backward recursion: 
i) Forward recursion: 

𝐳𝑡
𝑡−1  = 𝐴𝐳𝑡−1

𝑡−1,                                             (14)

𝑉𝑡
𝑡−1  = 𝐴𝑉𝑡−1

𝑡−1𝐴′ + 𝑄,                               (15)

𝐾𝑡  = 𝑉𝑡
𝑡−1𝐶′(𝐶𝑉𝑡

𝑡−1𝐶′ + 𝑅)−1,         (16)

𝐳𝑡
𝑡  = 𝐳𝑡

𝑡−1 + 𝐾𝑡(𝐲𝑡 − 𝐶𝐳𝑡
𝑡−1),              (17)

𝑉𝑡
𝑡  = 𝑉𝑡

𝑡−1 − 𝐾𝑡𝐶𝑉𝑡
𝑡−1                           (18)

 

 

ii) Backward recursion: 

𝐽𝑡−1  = 𝑉𝑡−1
𝑡−1𝐴′(𝑉𝑡

𝑡−1)−1,                                             (19)

𝐳𝑡−1
𝑇  = 𝐳𝑡−1

𝑡−1 + 𝐽𝑡−1(𝐳𝑡
𝑇 − 𝐴𝐳𝑡−1

𝑡−1),                             (20)

𝑉𝑡−1
𝑇  = 𝑉𝑡−1

𝑡−1 + 𝐽𝑡−1(𝑉𝑡
𝑇 − 𝑉𝑡

𝑡−1)𝐽𝑡−1
′ ,                      (21)

𝑉𝑡−1,𝑡−2
𝑇  = 𝑉𝑡−1

𝑡−1𝐽𝑡−2
′ + 𝐽𝑡−1(𝑉𝑡,𝑡−1

𝑇 − 𝐴𝑉𝑡−1
𝑡−1)𝐽𝑡−2

′ ,       (22)

 

where Eq. (22) is initialized as 𝑉𝑇,𝑇−1
𝑇 = (𝐼 − 𝐾𝑇𝐶)𝐴𝑉𝑇−1

𝑇−1. 

After calculating the conditional expectations of the latent variables (E-step), the M-step re-estimates 
the parameter vector 𝜃 to be used in the E-step. To estimate 𝜃 = (𝐴, 𝐶, 𝑄, 𝑅, 𝜋1, 𝑉1), we take the 
respective partial derivative of Eq. (7), set to zero, and solve for the value of each respective parameter.  

In particular, the updated parameters are computed as follows: 

i) Projection matrix: 

∂𝐿

∂𝐶
 = − ∑  

𝑇

𝑡=1

 𝑅−1𝐲𝑡𝐳̂𝑡
′ + ∑  

𝑇

𝑡=1

 𝑅−1𝐶𝑃𝑡 = 0,

𝐶new  = (∑  

𝑇

𝑡=1

 𝐲𝑡𝐳̂𝑡
′) (∑  

𝑇

𝑡=1

 𝑃𝑡)

−1

.               (23)

 

ii) Measurement noise covariance: 

∂𝐿

∂𝑅−1
=

𝑇

2
𝑅 − ∑  

𝑇

𝑡=1

  (
1

2
𝐲𝑡𝐲𝑡

′ − 𝐶𝐳̂𝑡𝐲𝑡
′ +

1

2
𝐶𝑃𝑡𝐶′) = 0,

𝑅new =
1

𝑇
∑  

𝑇

𝑡=1

  (𝐲𝑡𝐲𝑡
′ − 𝐶new𝐳̂𝑡𝐲𝑡

′).               (24)

 

iii) State transition matrix: 

∂𝐿

∂𝐴
 = − ∑  

𝑇

𝑡=2

 𝑄−1𝑃𝑡,𝑡−1 + ∑  

𝑇

𝑡=2

 𝑄−1𝐴𝑃𝑡−1 = 0,

𝐴new  = (∑  

𝑇

𝑡=2

 𝑃𝑡,𝑡−1) (∑  

𝑇

𝑡=2

 𝑃𝑡−1)

−1

.

 (25) 

iv) State noise covariance: 
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∂𝐿

∂𝑄−1
 =

𝑇 − 1

2
𝑄 −

1

2
(∑  

𝑇

𝑡=2

 𝑃𝑡 − 𝐴new ∑  

𝑇

𝑡=2

 𝑃𝑡−1,𝑡) = 0,

𝑄new  =
1

𝑇 − 1
(∑  

𝑇

𝑡=2

 𝑃𝑡 − 𝐴new ∑  

𝑇

𝑡=2

 𝑃𝑡−1,𝑡).           (26)

 

v) Initial state mean: 

∂𝐿

∂𝜋1
 = 𝑉1

−1(𝐳̂1 − 𝜋1) = 0,

𝜋1
new  = 𝐳̂1.

                          (27) 

vi) Initial state covariance: 

∂𝐿

∂𝑉1
−1  =

1

2
𝑉1 −

1

2
(𝑃1 − 𝐳̂1𝜋1

′ − 𝜋1𝐳̂1
′ + 𝜋1𝜋1

′ ) = 0,

𝑉1
new  = 𝑃1 − 𝐳̂1𝐳̂1

′ .

    (28) 

Finally, using the Markov property, the missing sensor measurements 𝐘𝑚 can be computed from the 
estimation of the latent variables as  

𝐸[𝐘𝑚 ∣ 𝐘𝑟, 𝐙; 𝜃] = 𝐶new 𝐸[𝑍|(𝑡,𝑘), 𝜙𝑡,𝑘 = 0].           (29) 

The Eqs. (8)-(22) (E-step) and Eqs. (23)-(28) (M-step) complete one iteration of the EM algorithm; these 

equations are alternated repeatedly until the difference 𝐿(𝜃new ) − 𝐿(𝜃old ) changes by an arbitrary 

small amount 𝜖. 

An alternative procedure can be followed based on Bayesian updates using sampling by setting 
conjugate prior distributions over all parameters [8]. This method provides the added benefit of 
uncertainty quantification based on computed position densities over the parameter space. The 
computation is carried out by Gibbs sampling, which constitutes an iterative Markov chain Monte Carlo 
(MCMC) scheme [9]. Missing values can be iteratively imputed by computing their conditional 
expectation with respect to the values of observed measurements, the posterior expectations of latent 
variables and the updated parameter values.  

3.2 Performance assessment 

3.2.1 Dataset description 

The VeReMi dataset [10] includes 19 misbehaviour attack types and models two road traffic densities: 
high-density (37.03 Vehicles/km2) and low-density (16.36 Vehicles/km2). A log file per vehicle is 
generated which contains basic safety messages (BSM) transmitted by neighbouring vehicles over its 
entire trajectory. Each attack type dataset contains a ground truth file to record the observed 
behaviour of all participating vehicles. BSMs constitute a three-dimensional vector for position, speed, 
acceleration and heading angle features. Figure 1 depicts a raw sample of BSM data for a single vehicle. 
For subsequent imputation analysis, we have considered the log file for a single vehicle and kept only 
the genuine information by properly removing the misbehaving attack data, since the attack detection 
and classification are considered irrelevant tasks to our problem. Synthetic dropouts are then used to 
generate missing data by uniformly selecting space-time points for occlusion.  
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Figure 1: BSM data for a specific vehicle (ID:33) in VeReMi 

3.2.2 Results 

In this section, we aim to validate our proposed imputation method described in Section 3.1 against 
simulation results and provide a performance evaluation in terms of reconstruction error. In our 

proposed scheme, we initialize our estimated received time sequence 𝐘̂ with 𝐘𝑟 while the missing 
sensor measurements are initially reconstructed by means of linear interpolation and then iteratively 
imputed as in Eq. (29). The process continues by updating the expectations of the latent variables 
based on the newly imputed values of the missing measurements until convergence. We further 
assume that the noise covariances in 𝜃 constitute diagonal matrices. 

The effectiveness of reconstruction is evaluated in terms of the mean squared error (MSE), defined as 
the average of the squared differences between the real and reconstructed missing measurements, 
i.e., 

MSE (𝐘, Φ, 𝐘̂) =
1

∑  𝑡,𝑘   (1 − 𝜙𝑡,𝑘)
∑  

𝑡,𝑘

(1 − 𝜙𝑡,𝑘)(𝑌𝑡,𝑘 − 𝑌̂𝑡,𝑘)
2

. 

To reduce random effects, we repeat each simulation 100 times and we report the average of the MSE. 

Table 1 shows the imputation performance in terms of MSE for randomly missing values among 
measurement streams and time-steps. It can be observed that the proposed imputation method is 
capable of drawing insight from the received measurement values to make valid inferences for the 
missing data. Imputation performance expectedly registers a decline with rising percentage of missing 
entries in the aggregation point, albeit not at prohibitive levels. 

 Missing values % (x100) 

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 

MSE 0.036 0.039 0.04 0.042 0.043 0.045 0.046 0.048 0.051 0.055 

Table 1: Imputation performance for varying percentage of missing measurements 
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In the following, we have conducted two types of experiments, investigating primarily the effect of 
ensuing occlusions: (a) we randomly opted for 1, 2, and 3 measurement streams to exhibit consecutive 
missing values of varying length starting at a random point in time (Tables 2-4, respectively); and (b) 
we opted for all measurement streams to report missing values for different scenarios of length of 
ensuing occlusions (Table 5). 

 Occlusion length 

10 20 30 40 50 60 70 80 90 100 

MSE 0.0049 0.0052 0.0057 0.0064 0.0069 0.0076 0.0088 0.01 0.0144 0.0171 

Table 2: Imputation performance for varying occlusion length with one missing measurement stream 

 Occlusion length 

10 20 30 40 50 60 70 80 90 100 

MSE 0.011 0.0115 0.0118 0.0121 0.0126 0.013 0.0137 0.0144 0.0151 0.0178 

Table 3: Imputation performance for varying occlusion length with two missing measurement streams 

 Occlusion length 

10 20 30 40 50 60 70 80 90 100 

MSE 0.013 0.0144 0.0156 0.0164 0.0173 0.018 0.0199 0.0225 0.0263 0.0299 

Table 4: Imputation performance for varying occlusion length with three missing measurement streams 

 Occlusion length 

10 20 30 40 50 60 70 80 90 100 

MSE 0.0784 0.083 0.091 0.1089 0.133 0.188 0.224 0.252 0.391 0.54 

Table 5: Imputation performance for varying occlusion length with all missing measurement streams 

We observe that reconstruction of missing values in the case of experiment (a) does not suffer from 
the limitations imposed by potentially unfavourable network conditions causing occlusions. The 
imputation mechanism takes advantage of spatiotemporal correlations based on the received 
measurement streams which are consistent with the underlying physical process. Nevertheless, the 
recovery of missing vehicular information in experiment (b) suffers from the fact that in the absence 
of any measurement stream for an extended period of time there is non-existent spatial information 
in each time-step for the dynamical model to exploit. Moreover, the temporal information is limited 
to the relatively distant time-steps with recorded measurement values. Hence, the predicted values 
are mainly influenced by the outcome of linear interpolation from the initial stage of data imputation 
process, registering significant mismatch with respect to the ground truth values. 

3.3 The potential of deep learning solutions 

In the context of SUCCESS-6G, we also aim to summarize state-of-the-art guidelines for deep learning 
topology design and hyper parameter tuning in data imputation problems. We will implement a 
general approach in PyTorch framework and extend it to two implementations of (i) variational 
autoencoders and (ii) Generative Adversarial Imputation Networks (GAINs). We will define a set of 
scenarios reflecting possible real-world issues when the measurements are not being received or the 
sensors stop working. We will define a base classifier and compare its results on (i) the original dataset 
and (ii) imputed dataset in each scenario. The performance will be compared to the elementary 
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imputation techniques, e.g., rolling average/min/max/, etc. Regarding the applicability of variational 
autoencoders in data imputation tasks, we aim to extend the work of the authors in [11] by (i) 
proposing guidelines on deep net design, (ii) thorough comparison to other available methods and (iii) 
application of the method on the real-world datasets provided by IDNEO. 
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4 Conclusions 

In this deliverable, we have explored the ability of dynamical systems to mine measurement streams 
under incomplete received trajectories. Using an open-source dataset, and creating synthetic 
dropouts, we have evaluated the reconstruction error for different missing data configurations. The 
proposed imputation method is capable of extracting knowledge from the spatiotemporal synergy 
among the respective trajectories to make valid inferences for the missing data. Imputation 
performance expectedly registers a decline with rising percentage of missing entries in the aggregation 
point, albeit not at prohibitive levels. 
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