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Executive summary

This deliverable introduces the final set of security enablers specifically designed to support in-
telligent, context-aware security enforcement in Vehicle-to-Everything (V2X) systems. These
enablers form a foundational layer for enhancing trust and resilience, encompassing attack
detection methods and trust-aware knowledge exchange in decentralized V2X environments.
By integrating intelligence and context awareness into the security decision-making process,
SUCCESS-6G-DEVISE facilitates security enforcement by enhancing responsiveness to emerg-
ing threats.
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1 Introduction

This deliverable presents a comprehensive suite of security enablers specifically engineered to
support intelligent and context-aware security enforcement within Vehicle-to-Everything (V2X)
communication systems. These enablers constitute a critical foundation for enhancing trust,
resilience, and situational awareness in vehicular environments, where rapid decision-making
and dynamic network topologies present unique security challenges. The proposed mechanisms
include advanced misbehavior detection techniques, as well as trust-aware knowledge exchange
schemes that facilitate secure information sharing among edge nodes in a distributed setting.

A key innovation of the SUCCESS-6G-DEVISE project lies in the integration of contextual
intelligence into the security decision-making process. As such, V2X security posture can be
dynamically adjusted—allowing for more adaptive, fine-grained attack detection strategies.
This results in enhanced responsiveness to both known and previously unseen security threats,
improving the overall robustness of V2X systems against a wide range of attacks. Through
these capabilities, the proposed enablers significantly contribute to the realization of security
enforcement in 6G-enabled V2X ecosystems, aligning with the project’s broader objective of
securing V2X communication for next-generation mobility.

1.1 Structure of the document

Section 2 presents a collaborative misbehavior detection methodology leveraging deep rein-
forcement learning for misbehavior detection and building on trust-aware knowledge exchange
among geographically distributed roadside units (RSUs). Section 3 demonstrates the feasibility
of a zero-touch network and service management (ZSM)-based framework to autonomously
protect V2X services at the edge by effectively mitigating various distributed denial-of-service
(DDoS) attacks. Finally, Section 4 introduces a hybrid deep learning methodology for mis-
behavior detection, where i) unsupervised learning is used to adapt to the dynamic nature of
V2X traffic patterns, overcoming the scarcity of labeled data for attacks, and ii) supervised
learning is employed to refine the classification and achieve high accuracy in real time.

SUCCESS-6G: DEVISE 5/39 TSI-063000-2021-40
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2 Deep Reinforcement Learning for Untrusted Dis-
tributed Environments in Automotive Use Cases

2.1 Introduction

The recent advancements in V2X technology promise increased road safety, driving autonomy,
and inclusive mobility options. Inevitably, this evolution has given rise to new threat vectors
associated with the inherent V2X security vulnerabilities, which adversaries may maliciously
exploit to disrupt system operation [1]. Among them, misbehavior attacks launched by rogue
insiders often become difficult to detect and contain, since malicious nodes may alter their
activity intelligently over time [2]. Although cryptographic techniques are capable of limiting
outsiders by offering authentication, integrity, and non-repudiation as a first layer of defense,
they may fall short in detecting rogue or dishonest behavior and identifying V2X insiders with
malicious intent. As such, the trustworthiness of exchanged information cannot be guaranteed.

Emerging data-driven approaches driven by artificial intelligence and machine learning
(Al/ML) tools provide a fertile ground for addressing misbehavior attacks [3]. With the
availability of vehicular data streams, Al/ML-based schemes can facilitate the analysis of be-
havioral patterns for V2X entities and determine trustworthiness levels. Such capabilities have
the potential to overcome the shortcomings of traditional misbehavior countermeasures, of-
fering effective solutions to achieve demanding security requirements. Despite the envisioned
benefits of data-driven misbehavior detection, the vulnerabilities of Al/ML models introduce
additional threat vectors, giving rise to finely targeted, stealthy, and scalable adversarial at-
tacks. Such sophisticated attack types may target both model training (i.e., poisoning attacks)
and test (i.e., evasion attacks) phases [4], and undermine the efficacy of misbehavior detection.
Collaborative misbehavior detection, relying on decentralized learning models at the vehicular
edge, may further extend the attack surface and, thus, exacerbate the impact of adversarial
attacks. Consequently, the pervasive adoption of Al/ML models for misbehavior detection
could be hindered if security concerns related to the model vulnerabilities are not addressed.

Considering the aforementioned research challenges, we introduce a novel approach for
collaborative misbehavior detection that builds on geographically distributed RSUs. Each RSU
employs a deep reinforcement learning (DRL) model for the detection of malicious traffic
stemming from misbehaving vehicles. Leveraging transfer learning principles, the knowledge
learned at source RSUs is shared with the target RSU to reuse relevant expertise for misbehavior
detection. In the presence of adversarial attacks, the proposed approach performs selective
knowledge transfer from trustworthy source RSUs to avoid negative knowledge sharing from
adversary-influenced RSUs. For this purpose, a novel trust evaluation metric, referred to as
semantic relatedness, is used by the target RSU to quantify the trust level of each source RSU
for collaborative misbehavior detection. Through diverse scenarios of collaborative misbehavior
detection and an open-source dataset, we evaluate the learning performance of involved RSUs
in the presence of adversaries. Besides reducing the training time at the target RSU, our
scheme is shown to significantly outperform the baseline scheme with tabula rasa learning,
demonstrating its high effectiveness. Interestingly, our approach enhances robustness and
generalizability by effectively detecting previously unseen and partially observable misbehaviors.
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2.1.1 Related Work

Aiming to address the complex V2X security landscape, several recent works leverage Al/ML-
driven techniques for misbehavior detection [3]. Supervised learning schemes may be im-
practical in V2X scenarios with an expanded attack surface, due to limited access to labeled
training examples and/or dependence on security threshold values. On the other hand, un-
foreseen alterations in vehicular mobility, due to either naturally drifting traffic patterns or
unprecedented malicious activity, introduce challenges (e.g., model overfitting) to misbehav-
ior detection schemes relying on conventional deep learning (DL). Furthermore, a number
of reputation or trust-based approaches have been proposed in relevant literature to elevate
trustworthiness levels in untrusted vehicular environments [5]. Yet, their applicability in collab-
orative misbehavior detection may be limited, since such methods often assume infrastructure
nodes (e.g., RSUs) to be legitimate and non-susceptible to adversarial attacks.

It is plausible that decentralized learning architectures for collaborative misbehavior detec-
tion inadvertently make the underlying models attractive targets for adversarial attacks. In
turn, locally trained misbehavior detection models can be influenced to reach incorrect deci-
sions/predictions or leak confidential information. For instance, in data poisoning attacks [6],
an adversary aims at deliberately modifying the learning algorithm during training via false
data injection or manipulation. Surprisingly, the detrimental impact of such adversarial ma-
nipulations on misbehavior detection performance remains rather unexplored. Dealing with
adversarial attacks is often non-trivial and requires enhanced solutions to foster trust and
stimulate confidence in data-driven misbehavior detection.

Overall, existing Al/ML-based misbehavior detection models can be either centrally trained
in the cloud and tested locally, or both training and detection are realized in vehicles or RSUs.
Yet, these models are susceptible to adversarial attacks, e.g., data poisoning [7]. As such, an
attacker may poison the centralized model training pipeline and influence downstream tasks
at vehicles or RSUs to misclassify, which could inflict a single point of failure. Similarly, locally
trained misbehavior detection models may suffer from data poisoning and adversarial manip-
ulations owing to the extended attack surface. Hence, albeit offering enhanced detection
performance, such models may not be robust enough against adversarial attacks. Moreover,
they may have limited capability in detecting unseen (i.e., non-anticipated) misbehavior at-
tacks. On the contrary, we propose distributed collaborative learning to enhance misbehavior
detection performance, making it robust against adversarial attacks and capable of generalizing
to detect unseen and partially observable attacks.

2.2 System Model

This section introduces the vehicular network model, misbehavior detection model, and adver-
sarial model considered in this work. We provide the details in the following.

2.2.1 Vehicular Network Model

Vehicular networks typically comprise a large number of geographically distributed RSUs. RSUs
are stationary entities interconnected with each other and the Internet. The usability of RSUs
is multifaceted as they offer various services such as Internet access, security solutions, and
real-time traffic data distribution. Normally, RSUs have superior computational capabilities

SUCCESS-6G: DEVISE 7/39 TSI-063000-2021-40
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Figure 1. Considered network model for collaborative misbehavior detection. Distributed
knowledge transfer between source RSUs {s;}7*, and the target RSU ¢ is depicted with green
arrows for positive knowledge and with orange for negative knowledge [8].

compared to in-vehicle resources, which allows vehicles to offload computation-intensive tasks
to RSUs. Figure 1 illustrates the distributed vehicular network model considered in this work.
Each RSU experiences its own vehicular environment and receives traffic within its cover-
age. The RSUs are interconnected via wired connections to provide reliable RSU-to-RSU
communication. We assume authentication and authorization procedures have already been
performed before V2X communication takes place among entities. The involved vehicles (i.e.,
authenticated and authorized) periodically broadcast BSMs, which are received by RSUs in
their connectivity range. BSMs include standard-related parameters such as position, speed,
acceleration, heading angle, and other relevant vehicular information [9].

In our proposed setup, a distributed collaborative misbehavior detection system is consid-
ered where we leverage knowledge transfer in the context of transfer learning. As shown in
Figure 1, each RSU is equipped with a DRL-based misbehavior detection system (DRL-MDS)
and detects misbehaving vehicles. Misbehavior detection is performed at the RSU level, since
the vehicle may not have complete information in its communication range due to ephemeral
connectivity and/or limited computational resources. The knowledge learned at source RSUs
is transferred to the target RSU to reuse existing knowledge during its learning process. The
target RSU may not necessarily need to be a neighbor, but it could also be a distant RSU,
which shall be reusing the available knowledge of sources to detect misbehaviors.

2.2.2 Misbehavior Detection Model

In our approach, each RSU is equipped with an MDS as shown in Figure 1. The DRL-based
model, introduced in our previous works [10, 11], is used for detecting misbehaving vehicles.
Here, we present the formulation of the tabula rasa DRL model used for misbehavior detection.
A tabula rasa model aims to learn efficiently from scratch without any external or previous
knowledge. The details of transfer learning incorporation into the DRL model are provided in
Section 2.3.

SUCCESS-6G: DEVISE 8/39 TSI-063000-2021-40
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DRL Model

The vehicular environment considered in this study follows a Markov decision process (MDP)
framework to facilitate the detection of misbehaviors through sequential decision-making. Con-
sistent with the MDP formulation, the action of misbehavior detection changes the environ-
ment based on the decision of either genuine or malicious behavior at time-step t. Subsequently,
the decision at time-step ¢+ 1 is influenced by the altered environment from the previous time-
step t. The aggregated vehicular traffic at each RSU consists of a time-series repository of
received BSMs with intrinsic spatiotemporal interdependencies. In this work, we consider a
DRL-based misbehavior detector deployed at the edge RSU. The detector (agent) interacts
with the vehicular environment to learn the optimal detection policy 7*. During training, the
e-greedy method is leveraged to strike a balance between exploration and exploitation in the
agent's strategy. Next, we describe the components relevant to the DRL model.

i) Agent: The agent receives the vehicular traffic data as a time series and prior related
decisions as inputs (i.e., state s;), and generates the new decision made (i.e., action a;) as
output. The agent’'s deep neural network comprises an LSTM layer and a fully connected
neural network with linear activation to generate (J-values as choices for the action a;. At
each time-step t, the agent's actions are selected by the policy . The agent's experience, i.e.,
e; =< Sg, Ay, Ty, Sg1 >, stores all the behaviors of the misbehavior detector. By exploiting
experience, the detector is progressively improved to obtain a better estimation of the Q(s, a)
function. The objective is to maximize the expected sum of future discounted rewards by
learning the 7*. The discounted reward return is expressed as

T
R, = Z’yk’trk. (1)
k=t
()-learning model updates are performed with learning rate o and discount factor v as

Q(s¢, ar) < Q(sg, ar)
+ afry + yr;la?Q(sHl, asp1) — Q(Se, ar)). (2)

i) States: The state space comprises the sequence of previous actions denoted by
Saction =< Q4_1,0¢, ..., Ag1n_1 >, and the current BSM information denoted by sy =<
X, Xig1y oo, Xy >. X¢ € R? is a d-dimensional feature vector at time-step ¢, including
information on d different features. According to the state design, the next action taken by
the agent depends on the previous actions and the current BSM information. This design
enables the agent to capture temporal dependencies and make more informed decisions.

iii) Actions: The action space is defined as A = {0,1}, where 1 indicates the detection of
a misbehavior and 0 represents the genuine behavior. The deterministic detection policy 7 can
be expressed as a mapping, i.e., m: sy € S — a; € A, from states to actions, where 7(s)
prescribes the action that the agent takes at state s. In a given state s, the agent selects the
action based on the optimal detection policy given by

7" = argmax Q*(s,a). (3)
acA

iv) Rewards: The reward function R(s, a) is defined based on the confusion matrix typically
used in ML classification problems. A numerical value for r; is assigned based on the ground
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truth information of BSMs. A positive reward is given upon correct detection of a misbehavior,
i.e., true positive (TP), or a normal state, i.e., true negative (TN). A negative reward is given
when a normal state is incorrectly identified as a misbehavior, i.e., false positive (FP), or
a misbehavior as a normal state, i.e., false negative (FN). The agent is penalized more for
FN actions than for FPs, as the correct identification of misbehavior is necessary to avoid
hazardous situations. Accordingly, we define the immediate reward r; € R of the agent as

a, if a;isa TP,
b, if a; isa TN,
—c, if a;is an FP,
—d, if a;isan FN,

(4)

r(s¢, ar) =

where a,b,c,d > 0, with a > b and d > c.

2.2.3 Adversarial Model

In this work, we assume the presence of adversaries attempting to contaminate the training
data and realize poisoning attacks on the distributed and collaborative DRL-MDS models. In
particular, we consider two data poisoning attacks pertinent to adversarial ML: 7) label-flipping
and i7) policy induction attacks. In the case of label-flipping, it is assumed that the adversaries
are rogue insiders who contribute to the training data or have access to the training data itself.
In policy induction, we consider an exogenous attacker who can modify the state space before it
is observed by the DRL agent. In both cases, attackers aim to maliciously influence the learning
model and, subsequently, force incorrect outcomes in downstream misbehavior detection tasks.

In a label-flipping attack, we consider an attacker who targets the malicious class to flip
the labels of certain source training data instances at an RSU. In this scenario, the adversarial
attacker randomly selects a set of misbehaving vehicles and flips the labels of their data
instances into genuine ones, resulting in a targeted random label-flipping attack (Definition 1).
The attacker aims to misclassify selected training samples from malicious class 1 to genuine
class 0. Following Definition 1, we denote Dg, as the training data of source RSU S, i.e.,
Ds, = {(xs,,,Ys1,), - (X510, Ysi )5 -5 (Ts5,5 Us,, ) o with g, € Xg, representing the k-th
data instance of Dg, while ys,, € Ys, represents the corresponding label of xg,, .

Definition 1 (Label-flipping attack) Given training samples {xs, ,ys, }i_, of Ds,, be-
longing to source RSU S; with zg, € Xg, and ys,, € Ys, = {0,1}, a poisoning attack
is defined as a targeted random label-flipping attack when the attacker randomly selects a
fraction ( € (0,1] of misbehaving vehicles and flips the label of the corresponding training
samples from 1 to 0.

In a policy induction attack, we properly adapt the adversarial attack originally presented in [12]
in a DRL context. The malicious intent here is to force the target DRL agent to learn a policy
selected by the adversary. We assume an exogenous attacker with minimal a priori information
(e.g., input type and format) of the target DQN, and with knowledge of its reward function and
the update frequency of the target network. The attacker can directly manipulate the target
DQN's environment configuration, albeit with no control over the target network parameters,
reward function, or optimization mechanism. According to Definition 2, the attacker creates

SUCCESS-6G: DEVISE 10/39 TSI-063000-2021-40
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replica DQNs (i.e., @, Q/) of the target's DQN (i.e., @, Q) and initializes them with random
parameters. Since the attacker has no knowledge of the target's DQN architecture and its
parameters at every time step, a black-box technique is followed to exploit the transferability
of adversarial examples. This is achieved by crafting state perturbations using replicas of the
target's DQN such as those introduced in [13]. Moreover, the Fast Gradient Sign Method
(FGSM)? algorithm is used to craft adversarial examples at every training time step.

Definition 2 (Policy induction attack) The attacker induces an arbitrary adversarial policy
Tadw ON the target DQN by injecting adversarial examples into training data. Specifically, given
state observation sy, 1, the attacker crafts a perturbation vector (St+1 ) using FGSM at every
training time-step and injects it into the target DQN's state space, as

aizdv <~ ﬂ-adv(st—i-l)7 (5)
St+1 — Cmft(@', Qs St+1) 5 (6)
Sti1 ¢ Sttt + Ogr1. (7)

Crafting adversarial inputs sy and sy, requires minimizing the loss function in (8) to force
the target DQN to optimize towards action o', given state s;, as

ming (y, — Q' (s¢, ar; 0))?, (8)
where y, = 1y + 'ymaxa/QA’(s@H, a0 ) and Q', Q' are the replica DQNSs of the target DQN.

2.3 Transfer Learning-Based DRL Framework

The distributed RSU deployments in vehicular systems and the varying spatiotemporal behavior
of traffic traces, render the training of a DRL-MDS agent difficult, especially in detecting
unseen and partially observable misbehavior attacks. Challenges in such complex setups include
slow convergence of the learning process, overfitting, and/or sub-optimal solutions due to poor
exploration [15]. Hence, we advocate the adoption of a transfer learning-based DRL approach
to achieve distributed collaborative misbehavior detection in adversarial vehicular environments.
We rely on selectively transferring knowledge from trustworthy source RSUs to avoid negative
knowledge sharing from adversary-influenced RSUs, as shown in Figure 2.

2.4 Transfer Learning for DRL-based Misbehavior Detection

TL leverages valuable knowledge acquired in one task and past experience to improve learning
performance on other tasks (similar/dissimilar). The knowledge learned and previous experi-
ences obtained from learning some source tasks, can be re-used to enhance the learning of
some target tasks. In our work, the task represents the misbehavior detection performed in
each RSU. Most DRL-based works in related literature (Section 2.1.1) have developed agents
that can efficiently learn tabula rasa without any previously learned knowledge. Yet, tabula
rasa DRL techniques require a long learning period to be effective, which can be inefficient in

2The FGSM method utilizes the neural network gradients’ sign to create a perturbed adversarial input
that maximizes the loss [14]. For a given input z, the adversarial input 2’ generated by the FGSM can be
summarized as @’ = x + e xsign(V,J (6, x,y)), where y is the label of input z, € denotes a small multiplier, 6
are the model parameters, and J represents the loss.
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Cumulative return Select a subset of trustworthy Instance transfer
sources from selected sources

Jj=1

Environment Environment Environment

Figure 2: Visualization workflow for selecting trustworthy source RSUs. Source RSUs with
policies {rs,}7, are ranked (franking) based on normalized scale cumulative return values

{Gl e s Jiz1 € [0,1], which are extracted from the target RSU t's environment. Instances

{(sgt), agt), ri(t), sl(-tﬂ)) = d,, }¥_, are transferred to the target RSU ¢ from k subset of trust-
worthy source RSUs with policies {r,, }*_,, where k < m and Dg denotes samples of source
RSUs. Green arrows denote positive transfer from trusted sources and the orange arrow rep-

resents a potential negative transfer from a malicious source [8].

computationally intensive and mission-critical operations [16]. For instance, an agent at the
start of learning may tend to spend significant time exploring the environment before finding
an optimal policy. Thus, TL can be leveraged to accelerate the learning. In this context,
source and target RSUs associated with TL can be represented as MDP3 agents. Accordingly,
TL between RSUs can be defined as follows.

Definition 3 (Transfer learning between RSUs) Given a set of m source RSUs with
MDPs My = {|J M;s|M;s € My} and a target RSU with MDP M,, the goal of TL is
i=1

to learn an optimal policy w; for the target RSU as

7y = argmax Eg s, o, [, (S, )], (9)
by leveraging external information I, from M, along with internal information 7, from M.
In (9), my = ¢(Zs ~ My, T, ~ M,) : sy €S — a; € A is a policy that maps states to actions
for M, which is learned from both I, and Z,. The policy m, is estimated using a DNN.

In multi-source* RSU deployments, according to Definition 3, the aim is to enhance the
learning of misbehavior detection at the target RSU by leveraging knowledge acquired from
a set of source RSUs. Assume m source RSUs with MDPs M, = {(S;, A;, Pi, Ri, Vi) } 1y,

3Henceforth, MDP and environment are used interchangeably.
“In a single-source scenario with [M,| = 1, tabula rasa learning occurs without any external transfer when
Zs = 0.
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and a detection policy 7, for each source RSU i. Then, the target RSU with MDP M, =
(S, At, Pe, Ri, ) aims to enhance the learning of 7} by leveraging Z, ~ M. The external
7, represents transferred knowledge on misbehavior detection from source RSUs.

2.5 Knowledge Transfer

Previous works (e.g., [17, 18, 19]) on the integration of TL with collaborative DRL have
demonstrated effectiveness in scenarios with some degree of similarity in agents’ experiences.
Based on the definition of transferred knowledge, TL techniques in DRL can be realized as
policy®, representation®, and instance transfer [16, 20]. We hereby employ an instance TL
technique to transfer misbehavior detection knowledge from a set of source RSUs to a target
RSU. The rationale lies in transferring those source samples that can enhance the detection
performance of the target RSU. Our method selects only related (i.e., good/useful) samples
collected from the environments of source RSUs as agents’ experiences. The selection of
such samples prevents negative knowledge transfer that may originate from adversarial source
RSUs. In collaborative DRL-MDS, positive transfer occurs when the transferred knowledge
from source RSUs improves the target RSU's performance. In negative transfer, the target’s
performance degrades compared to tabula rasa learning.

To realize collaborative DRL-MDS, our proposed methodology employs TL with a new
selective knowledge transfer scheme to prevent negative transfers from untrusted source RSUs,
asin Figure 2. Under positive transfer, the target RSU is expected to achieve higher cumulative
return as well as reach the asymptotic performance earlier than in tabula rasa learning. Hence,
measuring the degree of similarity in misbehavior detection performed at the source and target
RSUs becomes crucial to avoid negative transfer overhead in TL.

2.5.1 Trust Evaluation

In Figure 2, we provide a visualization workflow for trustworthy source RSUs' selection for
transfer. We first establish an inter-agent semantic similarity metric between the source and
target to ensure a positive transfer. A source RSU s; with policy 7, is considered to have
high semantic relatedness with the target RSU ¢, if 75, can generate the maximum cumulative
return from the target RSU’s environment in a limited number of training episodes. Inspired
by works in [17, 21], the semantic relatedness between the source and target RSUs is defined
as the gain of cumulative return for a policy 7, under the target reward function,

N.
GT = ZRtj(ﬂ'si), Vi e [1,m], (10)
o

where N, denotes the number of training episodes and R;(.) denotes the target reward function.
By utilizing semantic relatedness, the target RSU can effectively select a subset of source
RSUs that are trustworthy to contribute towards enhanced misbehavior detection. A higher

®In policy transfer, a set of policies {7, }, from source MDPs are transferred to the target MDP, and
then the target policy 7 is learned by utilizing knowledge from them.

5In representation transfer, the algorithm learns a feature representation of the task, such as a value
function V™ (s) or the Q™ (s, a) function, and the knowledge learned can be either directly used in the target
or indirectly using a task-invariant feature space.
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cumulative return in N, training episodes ascertains a positive transfer of detection knowledge
and implies that a source RSU is more reliable for collaboration. The procedure of selecting
trustworthy source RSUs for knowledge transfer is summarized in Algorithm 1. Without loss
of generality, we normalize cumulative return G7. in a way that the scaled cumulative return
G resides in the range of [0, 1].

T
scaled,s;

Algorithm 1 Selection of trustworthy source RSUs for transfer

Input: Load 7y, sy, ..., Ts,, , Where i € [1,m]
Output: Trusted policies 7g, , s, , ..., s, , Where & < m
1: for iteration ¢ = 1 to m do

N,
2:  Compute GF, = ZRH (7s,)

j=1
3: end for
4: G, = max(GT,GT,,...,GT )
5: Ggin = mln(G; ’ G§27 ceey G;rm)

GT, — GRin .

6: G;rcaled,s,i = m Vi € [1,m]
7 franking : G;rcaled,si - Tt”’,si Vi € [1>m]
8: Select k out of m sources with T}, 5, > Typ,, where Ty, ., Tty € [0,1]

In Algorithm 1, cumulative return is computed using (10) for each source RSU s; with a
policy 7, and Min-Max normalization is applied to scale cumulative returns {G7 }7*, into the
range of [0,1]. Min-Max normalization based on cumulative return values is defined as

e G;rl - G:I"\In
G!scaled,si = Gr  — Q7. ) (11)

where G and G7;, denote max{GT7 };", and min{GT }",, respectively. As such, the scaled

max

cumulative return G, o4, of a source RSU s; can be associated with its trust value T, g,
which is used by the target RSU to decide whether the source is trustworthy to collaborate
with. We introduce a source ranking strategy franking in Algorithm 1 (line 7), used by the target
RSU to sort source RSUs based on their trust values and select a subset lying above a specified
threshold value T3, € [0,1]. The selection of a threshold to ascertain the trustworthiness of
source RSUs can be either tolerant with a lower T};, value or more stringent with a higher T},
value. Reputation or trust-based methods in related literature typically use a [0, 1] scale to

represent trust/reputation values and consider 0.5 as a neutral value or a threshold [22, 23].

2.5.2 Selective Knowledge Transfer

Upon the completion of source RSUs' selection, the target RSU applies instance TL by collect-
ing samples from k trustworthy source RSUs following their policies {r,, }*_, (i.e., the output of
Algorithm 1). In target RSU training, we employ a selective knowledge transfer scheme, called
experience selection, that selects source samples with high semantic relatedness. Motivated
by [17, 24], experience selection is defined as

Q*(S> a) >y> QG(S> a)’ (12)

where Q*(.) represents an optimal @-function and y = Ry(s, a)+ymaXx,, , Qo(S¢+1,ar1). The
aim of the target RSU is to learn the optimal misbehavior detection policy 7; by obtaining an
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optimal @Q-function Q*(s,a) for a given state-action pair. The expected return achieved by
following an optimal policy is always greater or equal to that of any arbitrary behavior policy
1; hence, the expected return @), (s, a) of any arbitrary behavior policy 1 can serve as a lower
bound of the optimal Q-value Q*(s,a). Lower bound Q-learning [24] can be expressed as

T
Q*(S’ CL) > QM(Sa CL) = Eu[rt + Z ’Yk_trk]a (13)
k=t+1
with convergence guarantees of ()-values [25]. The lower bound @-value in (13) implies that
the estimated Qy(s, a) value in (12) is lower than the optimal Q*(s, a) value. Following lower
bound Q-learning, experience selection aims to update (y(s, a) towards the lower bound of
Q*(s, a) with source samples of high semantic relatedness, i.e., Qy(s,a) > y.

Algorithm 2 Target RSU training with transferred knowledge

Input: Load 7, ,7s,, ..., Ts, (output of Algorithm 1);
Initialize experience samples buffer S, replay memory buffer D, action-value function @ with random
weights 6 and discount factor ~

1: for episode = 1, M do
2 Initialize state sequence s
3 fort =1, T do
4: Pick a random value rnd € (0,1)
5: if € > rnd then
6: Select a random action a; € A with probability €
7 else
8: Select a; € A following policy m;
9: end if
10: Execute a;, and observe reward r; and next state s¢41
11: Collect samples D = {(st, at,S¢+1,7¢)} using my
12: Collect samples S = { (8¢, ar, St11,7¢)} using 7y, Vi € [1, k]
13: S+ SuD
14: Sample random minibatch of transitions (s¢, at, St+1,7¢) from S
15: Set 4, — {rt, if s¢+1 ter-minal
(¢, ar) +ymaxq,,, Qo(St+1,a:14+1),  otherwise
16: if Qo(st,at) > y: then
17: Select corresponding samples for target model update
18: else
19: Remove corresponding transitions (8¢, @, St+1,7¢) from S
20: end if
21: Gradient descent on (Qg(st,at) — y;)? according to (15)
22: end for
23: end for

The target RSU training with selective knowledge transfer is summarized in Algorithm 2.
The algorithm proceeds as follows to improve the learning performance of the target RSU with
the aid of experience selection. The training of the target RSU is divided into episodes. In
each time step, the target RSU selects an action a; € A either randomly with probability €
or according to the best ()-value given by (3) (lines 4-9). Subsequently, the chosen action a;
is executed in the environment, and the reward r; and the next state sy, are observed (line
10). Assume k trustworthy source RSUs with policies {7, }¥ ;. The target RSU can form
an experience samples buffer S by collecting samples following k source policies (line 12) and
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computes rewards using its current reward function. The amount of samples collected into S

from each trustworthy source RSU s; is equivalent to 7;, - |5’ , with
TT S; .
Ns; = kt—717 Vi € [Lk}a (14)
2 Tirs:
i=1
where Ti, s, = Gljeqs, N (11). Consequently, source RSUs with higher trust values will

transfer more samples, which results in learning more from a set of highly trusted RSUs. To
trade off exploitation with exploration, target samples are also added to S following the online
Q-network with e-greedy policy (line 13). In the target's model update, parameterized by 6,
training samples are drawn from S (line 14), and experience selection is applied (lines 16-17)
to filter out relevant samples. Conversely, samples that are not semantically important will
be removed from S (lines 18-19). As such, S is gradually updated while equally prioritizing
the remaining training samples, which results in improved sample efficiency. The target RSU
can thus leverage selective knowledge transfer and train its misbehavior detection model by
minimizing the loss function,

L6) = 5 3 1Qu(se,a0) — wil (15)

where target Q-values are given by v, = R(s¢, a;) + ymaxg,,, Qo(S¢+1, ar+1). Moreover, the
selection of samples with Qy(s¢, a;) > y; implies that learning updates in (15) are encouraged
towards the lower bound of the optimal Q*(s,a) value. Consequently, experience selection
updates the misbehavior detection policy 7, towards the optimal policy 7;.

Although experience selection improves sample efficiency, transferred knowledge from
source instances may introduce bias owing to differences in data distribution or variability
in misbehavior attack patterns. Therefore, to circumvent such bias, experience selection is
utilized only in early training stages and, subsequently, target RSU training switches to tradi-
tional DQN learning. Algorithm 2 for traditional DQN operates similarly but without sampling
from S (lines 13-14) and with no experience selection (lines 16-20). In this case, the target
RSU samples a minibatch of transitions from replay memory buffer D with training samples
from the target environment, and those samples are directly used to train the misbehavior
detection model by minimizing (15).

2.6 Experiments

Leveraging the open-source VeReMi dataset [9], we conduct experiments on a set of simulation
scenarios, listed in Table 1, to assess the proposed knowledge transfer approach. Our goal is to
provide empirical evidence of the benefits of TL through simulated scenarios for collaborative
misbehavior detection in unpredictable and untrusted vehicular environments. The considered
scenarios aim to cover diversified aspects of collaborative misbehavior detection by means of
knowledge transfer between RSUs. Vehicular mobility renders indispensable the study of such
scenarios that may arise in a collaborative misbehavior detection setup. With that aim, we
exploit the attack variants present in VeReMi. For each specific scenario, a different set of
misbehavior attacks is selected, aiming to provide sufficient coverage of the available attacks
in VeReMi.
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Scenario Objective
SC1 Detect future misbehaviors of the same type
SC2 Detect unseen/unknown misbehaviors of similar type
SC3 Detect partially observable misbehaviors

Table 1: Examined Scenarios

2.6.1 Examined Scenarios

We conduct experiments on a set of simulation scenarios, listed in Table 1, to assess the
proposed knowledge transfer approach. The goal is to provide empirical evidence of the benefits
of TL through simulated scenarios for collaborative misbehavior detection in unpredictable and
untrusted vehicular environments. The considered scenarios aim to cover diversified aspects of
collaborative misbehavior detection by means of knowledge transfer between RSUs. In what
follows, we elaborate on the considered scenarios.

SC1: The first scenario captures the requirement of detecting future misbehaviors of the
same type. In SC1, a misbehaving vehicle can permeate an attack across multiple geographic
locations across its trajectory, resulting in some RSUs experiencing the attack earlier in time
(sources) compared to others (targets). SC1 arises in situations where RSU deployments are
sparsely distributed in vehicular setups. In this case, the target RSU relies on collaborative
misbehavior detection to proactively detect future attacks of the same type.

SC2: In this scenario, the target RSU aims to acquire knowledge from source RSUs to
detect an unseen/unknown attack. Such situations may be encountered in practice due to blind
spots and occlusions caused by vehicular infrastructure or moving vehicles. This inevitably
results in limited situational awareness in some RSUs (targets) which may not experience
certain attack types. In this case, the target RSU seeks relevant knowledge from source RSUs
with expertise in detecting attacks of similar type. We assume that source RSUs are capable
of detecting a wider range of misbehavior attack types. On the contrary, the target RSU is
trained to identify a narrower set of attacks compared to source RSUs. In such cases, the
target RSU aims to leverage knowledge transfer from source RSUs to identify similar new
misbehavior attacks.

SC3: In this scenario, source RSUs are trained with different feature vectors resulting in
partial observability of the attack space. Such cases arise in practice when RSUs have diverse
computational capabilities, including different processing and buffer sizes, limiting their training
only on specific attack types. This heterogeneity may hinder an RSU's ability to process
multiple/high-dimensional feature vectors effectively. Thus, the target RSU needs to select
source RSUs based on relevant feature vectors to detect an array of misbehaviors and enhance
the effectiveness of collaborative detection.

2.7 Performance Evaluation

This section presents the learning performance of DRL-MDS agents for the scenarios described
above using VeReMi. Next, the resulting detection performance achieved via knowledge trans-
fer is assessed for different misbehavior attack types.
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Figure 3: Learning performance of source RSUs in SC1 for (Left) Random Position and (Right)
Random Position Offset misbehavior attack types.
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Figure 4: Learning performance of source RSUs in SC2 for (Left) a combination of DoS, DoS
Random and DoS Random Sybil; (Right) a combination of DoS, DoS Disruptive and DoS
Disruptive Sybil misbehavior attack types.

2.7.1 Learning Performance

We evaluate the learning performance of misbehavior detection agents in i) the source RSUs
with trained policies and ii) the target RSU with and without knowledge transfer.

Source RSUs

To assess the contribution of source RSUs towards knowledge transfer, we measure the average
reward gains per RSU during the interactions with their own environments.

Figure 3 illustrates the learning performance of source RSUs for two position-related mis-
behavior types considered for SC1. As can be visually comprehended, genuine source RSUs
accumulate significantly higher average rewards compared to malicious source RSUs, which
are detrimentally influenced by label-flipping and policy induction attacks. Furthermore, the
negative impact on the victim source RSU from the policy induction attack is greater than that
of the label-flipping attack. This can be attributed to the effectiveness of the policy induction
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Figure 5: Learning performance of source RSUs in SC3 for (Left) position variants with
Constant Position Offset (Gen. source 1), Random Position (Gen. source 2), and Random
Position Offset (Mal. sources) misbehaviors; (Right) speed variants with Constant Speed
Offset (Gen. source 1), Random Speed (Gen. source 2), and Random Speed Offset (Mal.
sources) misbehaviors.

attack which injects crafted inputs at each training step towards the adversary's goal. This, in
turn, results in misclassifying malicious samples as genuine ones with increased false alarms.
Similar behavior can be observed in Figure 4 for DoS-related misbehavior variants considered
in SC2. In this case, each source RSU is trained on a combination of misbehavior attack types,
providing the capability to detect additional misbehavior attack types compared to SC1. In
Figure 5, the learning performance of source RSUs in SC3 for both position- and speed-related
misbehavior variants is shown. Similarly to SC1 and SC2, genuine sources perform significantly
better than malicious ones, while the pernicious impact of policy induction attacks compared
to label-flipping becomes apparent.

Target RSU

As shown in Algorithm 1, based on the available source policies, the target RSU selects a
subset of source RSUs using T}, to realize knowledge transfer. The proposed trust evaluation
supports dynamic thresholding to handle unpredictable and untrusted vehicular environments,
such as the erratic behavior of RSUs due to adversarial attacks. In our case, we select 0.5 and
0.8 for T}, to assess the impact of different threshold values on knowledge transfer without
loss of generality.

Figures 6, 7, and 8 depict the learning performance of the target RSU in SC1, SC2, and SC3,
respectively. We report average rewards for knowledge transfers involving different sources by
calculating the average across three runs. The case of no transfer between source and target
RSUs (i.e., tabula rasa learning) is also evaluated as a baseline. In addition, the black dashed
lines in Figures 6—8 represent the best return reward of the baseline scheme with tabula rasa
learning. These lines demonstrate the training time reduction achieved under each transfer
at the target RSU to reach a certain performance level. Moreover, Table 2 presents specific
information regarding the reduction in training time achieved through knowledge transfer,
detailing the required number of training episodes and the corresponding wall-clock time.
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Figure 6: Learning performance of the target RSU, averaged across three runs, in SC1 for

(Left) Random Position and (Right) Random Position Offset misbehavior attack types.
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Figure 7: Learning performance of the target RSU, averaged across three runs, in SC2 for
(Left) a combination of DoS and DoS Random; (Right) a combination of DoS and DoS
Disruptive misbehavior attack types.

Figure 6 illustrates average rewards accumulated by the target RSU for a specific misbehavior
with knowledge transferred from the source RSUs (shown in Figure 3). It can be observed
that our selective knowledge transfer approach significantly enhances the learning performance
compared to tabula rasa. Specifically, the target RSU achieves a higher cumulative return and
reaches asymptotic performance earlier than in the baseline. In addition, Figure 6 reveals the
impact of different threshold values on learning performance. When a tolerant T}, = 0.5 value
is set, both genuine and malicious (label-flipping and policy induction) source RSUs feature in
the transfer. With a stringent T}, = 0.8, collaboration stems only from genuine source RSUs.
Interestingly, even though malicious source RSUs are involved with 7}, = 0.5, the sample
contribution in (14) and the experience selection in (12) ascertain positive transfer, resulting
in similar performance as in Ty, = 0.8.
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Figure 8: Learning performance of the target RSU, averaged across three runs, in SC3 for
(Left) position-related and (Right) speed-related misbehavior variants.

Examin.ed Misbehavior Type(s) | Target Return Training time in episodes (reduction %) Training time in wall-clock time (mins) (reduction %)
Scenario Baseline TF! TF? TF? Baseline TF! TF? TF?
sc1 Random Position 0.2005 250 (bestlrzfu(r?\:l'yoo.)8173) (bestll'g(t)u(r(njf)O/f.)OISG) (best ?e6tlfrﬁn2;%1)_1575) 83.32 31.33 (62%) | 26.68 (68%) 24.35 (71%)
Random Position Offset | 04092 250 (bestlr‘:t‘u(rﬁ?"/fgzﬁ) (best ?fnff:/“l)_o%o) (bestlifu(r:?u/l"_}m g | 8293 | 3683 (56%) | 2614 (68%) | 3202 (61%)
se2 DoS Random Sybil 1.1878 20| o i&fﬁf‘oﬁ’.’ngo) (bestigtlu(j?ﬂ/f_)&%) (best lzfu(j?og“_)%n) 8457 | 5016 (41%) | 52.20 (38%) |  50.68 (40%)
DoS$ Disruptive Sybil 1.5235 20| (ot Irifu(f?ozm) (besﬁgfu(rrl]?o/z‘")3775) (best%(i?u(ri??é%g) 85.80 | 44.23 (48%) | 53.12 (38%) |  55.14 (36%)
sc3 Position variants* 0.2548 250 (best lrifu(ri:s')/{).)IGSG) (best lrifu(ri?lyoo.)w&) (bestlrifu(r:??.)mm) 79.18 | 39.37 (50%) | 40.35 (49%) 36.20 (54%)
Speed variants** 03541 20| (et i?u(rfo/f.)mn) (best ﬁi:uii??ﬂsg) (best lyifu(jf?_)sz py| 8059|3219 (60%) | 27.49 (66%) |  28.65 (64%)

TF!: w/genuine+malicious (label-flipping) (Ty, = 0.5)

TF2: w/genuine+malicious (policy induction) (Ty, = 0.5)

TF3: w/genuine only (T}, = 0.8)
* Constant Position Offset, Random Position, and Random Position Offset
** Constant Speed Offset, Random Speed, and Random Speed Offset

Table 2: Summary of training time and the best return reward at the target RSU under
knowledge transfer

2.7.2 Detection Performance

Detection performance is assessed in all scenarios in terms of Accuracy (A), Precision (P),
Recall (R), and F-score (F),

_ TP+ TN | (16)
TP+ TN +FP +FN

"= TP?;FP’ (17

R= W, (18)

F =20, (19)

respectively, by considering both genuine and misbehavior classes for each misbehavior type in
VeReMi. The accuracy in (16) indicates the ratio of all correct predictions to the total number
of considered input samples. The higher precision values in (17) indicate low FP rates, whereas
higher recall values in (18) indicate low FN rates. The F-score in (19) provides a harmonic
mean between precision and recall, which is used when FPs and FNs are vital. Therefore, a
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Examined Scenario | Misbehavior Type(s) Knowledge Transfer Accuracy | Precision | Recall | F-score
w/genuine+malicious (label-flipping) (7}, = 0.5) 0.9928 0.9778 | 0.9983 | 0.9879
. w/genuine+malicious (policy induction) (7, = 0.5) |  0.9933 0.9789 | 0.9987 | 0.9887
Random Position -

w/genuine only (73, = 0.8) 0.9920 0.9756 0.9977 | 0.9865
sc1 Baseline (no transfer) 0.9497 0.8978 | 0.9362 | 0.9166
w/genuine+malicious (label-flipping) (T, = 0.5) 0.9896 0.9721 | 0.9933 | 0.9826

- — — : P
Random Position Offset w/genu!ne+maI|C|ous (policy induction) (T3, = 0.5) | 0.9918 0.9764 | 0.9963 | 0.9862
w/genuine only (73, = 0.8) 0.9908 0.9730 0.9966 | 0.9847
Baseline (no transfer) 0.9474 0.8944 | 0.9317 | 0.9127
w/genuine+malicious (label-flipping) (73, = 0.5) 0.5659 0.5616 | 0.9915 | 0.7144

- — — : —
DoS Random Sybil w/genu!ne+maI|C|ous (policy induction) (T, = 0.5) |  0.5690 0.5606 | 0.9873 | 0.7150
w/genuine only (73, = 0.8) 0.5656 0.5581 | 0.9929 | 0.7145
s Baseline (no transfer) 0.5078 0.4730 | 0.5108 | 0.4912
w/genuine+malicious (label-flipping) (7}, = 0.5) 0.5544 0.5552 | 0.9955 | 0.7129

- — — : —
DoS Disruptive Sybil w/genu!ne+maI|C|ous (policy induction) (T}, = 0.5) |  0.5523 0.5544 | 0.9898 | 0.7107
w/genuine (T, = 0.8) 0.5552 0.5557 | 0.9960 | 0.7134
Baseline (no transfer) 0.4928 0.4587 | 0.5018 | 0.4793
w/genuine+malicious (label-flipping) (7, = 0.5) 0.9224 0.7982 | 0.9856 | 0.8822

- — — : —
Position variants* w/genu!ne+maI|C|ous (policy induction) (T3, = 0.5) | 0.9195 0.7956 | 0.9779 | 0.8774
w/genuine only (Ty, = 0.8) 0.9236 0.7998 | 0.9880 | 0.8840
<3 Baseline (no transfer) 0.4978 0.2956 | 0.5095 | 0.3741
w/genuine+malicious (label-flipping) (7}, = 0.5) 0.9447 0.8540 | 0.9824 | 0.9135
Speed variants** w/genu?neeraIicious (policy induction) (T3, = 0.5) | 0.9348 0.8275 | 0.9857 | 0.8997
w/genuine only (73, = 0.8) 0.9394 0.8399 0.9845 | 0.9062
Baseline (no transfer) 0.4988 0.2948 | 0.4953 | 0.3696

*Constant Position Offset, Random Position, and Random Position Offset **Constant Speed Offset, Random Speed, and Random Speed Offset

Table 3: Performance comparison for collaborative misbehavior detection in each scenario

higher F-score implies better performance in our examined scenarios.

Table 3 presents the performance results obtained from our comprehensive analysis of
collaborative misbehavior detection with the selective knowledge transfer approach. Results
show that misbehavior detection using knowledge transfer yields high effectiveness with a very
high F-score of 0.98 in SC1 under both T};, values of 0.5 and 0.8, while correctly identifying
misbehaviors with low rates of FPs and FNs. It should be highlighted that the baseline scheme
with tabula rasa also achieves a significantly high F-score of 0.91. This is due to the fact that
tabula rasa learning obtains sufficient knowledge during training to detect future misbehaviors
of the same type. Although the results are reported only for two misbehavior types in SC1,
similar performance levels were observed for other misbehavior types in VeReM.i.

Numerical results for SC2 demonstrate effective identification of unseen attacks with knowl-
edge transfer, achieving an F-score of 0.71 under both T}, values. Additionally, recall values
approaching 1.0 further elucidate that such non-anticipated attacks can be successfully de-
tected with a very low rate of FNs. As shown in Table 3, the baseline scheme is ineffective
in detecting unseen attacks and achieves very low F-scores of 0.49 and 0.48 in contrast to
knowledge transfers when encountering DoS Random Sybil and DoS Disruptive Sybil misbe-
haviors, respectively. This validates that the target RSU enhances its situational awareness
and detects non-anticipated misbehaviors by acquiring knowledge from source RSUs.

Detection performance in Table 3 reveals that target learning with knowledge transfer
yields significantly superior F-scores compared to the baseline scheme in SC3. Under both T},
values, the F-scores of 0.88 and slightly over 0.90 for position- and speed-related misbehaviors,
respectively, demonstrate high effectiveness in detecting a partially observable attack space.
Conversely, the baseline scheme becomes highly ineffective, as shown by the low F-score of
0.37 with a high number of FPs and FNs for both position- and speed-related misbehaviors.
It is worth noting that misbehavior variants generated by adding/subtracting an offset (i.e.,
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Constant/Random Position Offset and Constant/Random Speed Offset) are more challenging
to detect as compared to others, such as Constant Position and Constant Speed. Thus, the
transfer of relevant knowledge to the target RSU becomes imperative to effectively identify
such partially observable attack spaces.

Overall, across all three scenarios, collaborative misbehavior detection with knowledge
transfer significantly outperforms tabula rasa learning, as summarized in Table 3, demonstrat-
ing its high effectiveness. Specifically, our approach enhances robustness and generalizability
by effectively detecting previously unseen and partially observable misbehavior attacks.
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3 ZSM-based Security Slice Management for DDoS At-
tack Protection in Edge-based V2X Environments

3.1 Introduction

3.1.1 Background

The heterogeneity of beyond-5G (B5G) networks, combined with the dynamic nature of ve-
hicular environments, necessitates robust, automated, and intelligent security mechanisms.
Emerging V2X use cases are becoming especially complex given the ubiquitous mobility and
criticality of the associated communication and services. The deployment of such on-demand
services heavily relies on edge computing capabilities to fulfill the stringent V2X requirements
in terms of latency and throughput. In this context, edge nodes can directly benefit from
autonomous dynamic management capabilities at the edge, which (i) allocate dedicated re-
sources to ensure the correct deployment and operation of services; (ii) migrate these services
seamlessly and with anticipation; (iii) offload the computational load (e.g., delegate compu-
tationally intensive functions) [26].

Inevitably, security becomes one of the major concerns, due to the inherent V2X vulner-
abilities and breaches, with multi-faceted threat vectors which an adversary may maliciously
exploit to intrude the system. On top of this, decentralized edge deployments render the
attack surface sufficiently large and may further exacerbate the V2X security risks. Among
various attack types, Denial-of-Service (DoS) attacks constitute one of the salient threats
against edge infrastructures hosting V2X services [27]. In DoS attacks, an attacker tries to
prevent legitimate users from accessing the network and services, causing traffic disruption
which may destabilize the V2X system and threaten user safety. DoS attackers typically flood
the network either with traffic of higher frequency than the system can handle or with high
computational requests, resulting in an overload of computational resources. This inevitably
causes extensive periods of service unavailability where legitimate users cannot be served.
When such attacks are launched from multiple sources, often in spatially distant locations,
this results in distributed DoS (DDoS) attack variants [28].

Current technologies that cooperate to offer advanced services with an end-to-end (E2E)
perspective, could also jointly serve to provide protection against certain DDoS attacks. How-
ever, for protecting the entire V2X attack surface, their potential becomes limited without
intelligent orchestration engines. The orchestration layer is an essential element in ensur-
ing system automation, abstracting the complexity of the coordination and management of
technologies and domains (i.e., RAN, edge, cloud). Moreover, when orchestration processes
are combined with (i) policy-based approaches, that provide flexibility in specifying require-
ments, and (ii) intelligent decision engines, the benefits of abstracting the complexity of the
underlying technologies are highly leveraged, enabling B5G V2X use cases with highly diverse
requirements in terms of QoS and security [29]. In line with policy-based approaches, it is of
utmost importance to ensure that the right security level is properly applied based on the user
requirements. Security Service-Level Agreements (SSLAs) [30] are thus employed for this aim,
serving as a contract between the user and the operator.

Recent advances in the areas of 5G, V2X communication and security are also driven by
consistent standardization activities from relevant organizations (e.g., 3GPP, ITU, ETSI, and
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IEEE). Such standardization bodies also define specifications for key enabling technologies,
such as Zero-touch network and Service Management (ZSM), E2E slicing, and edge com-
puting, to enhance automation and security in future networks [31][32]. In particular, ZSM
represents a visionary next-generation management system with the ultimate goal of achieving
complete automation in all operational processes and tasks. These tasks include planning
and design, delivery, deployment, provisioning, monitoring, and optimization, all of which are
ideally executed without human intervention [33]. In addition, a growing number of standards-
developing organizations steer their efforts towards integrating data-empowered solutions for
V2X security. Over the next years, network operators are also expected to advance the imple-
mentation of automated E2E slicing management and security enforcement functionalities for
V2X systems by adopting standards such as ZSM [34].

3.1.2 Contribution

This section introduces a novel framework that combines the ZSM paradigm with E2E security
slicing to provide adaptive, policy-driven protection against DDoS threats [35]. In particular, we
demonstrate the feasibility of a ZSM-based framework to autonomously protect V2X services
located at the edge in a B5G infrastructure by effectively mitigating various DDoS attack
types. The threefold contribution of this article can be summarized as follows:

e We perform autonomous and ZSM-compliant security management of a real B5G net-
work and services through the deployment and enforcement of E2E B5G security slices.
The management involves the dynamic reconfiguration of B5G components (i.e., RAN
and V2X aggregator) in order to fulfill the SSLA.

e We incorporate security as a native element in the E2E ETSI slice management standard
to autonomously manage the E2E B5G security slices, including the E2E logical coordi-
nation of different domains to deploy and interconnect per-domain security sub-slices.

e We utilize the V2X aggregator and gNBs as security enforcement points to mitigate
DDoS attacks at two levels; firstly, where the attack is detected and, eventually, as
close as possible to the source. Adversaries are banned from the domain under attack,
while the mitigation countermeasure is shared with neighboring domains to avoid the
propagation of malicious information.

To showcase the detection capabilities of our approach at the edge, we integrate a data-
driven DDoS attack detection methodology, originally introduced in [10], based on DRL. By
performing experiments using an open-source dataset, our framework is shown to be highly
effective in detecting various DDoS attack variants while keeping detection latency at low
levels. The subsequent subsections present an overview of the proposed framework, with
further details available in [35].

3.2 ZSM-Based Security Slice Management Framework

The proposed framework is based on the ETSI ZSM reference architecture and is designed to
enable full lifecycle management of E2E security slices in V2X scenarios. It introduces both
proactive and reactive security mechanisms through closed-loop automation. By using this
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Figure 9: ZSM-based architecture of the proposed framework [35]. The Roman numerals on
the top right of each entity of the architecture denote the step of the closed loop in which
they participate.

standardized reference architecture, our security framework not only accelerates the deploy-
ment of innovative V2X services but also enhances operational efficiency, minimizes downtime,
and improves end-user experience.

As shown in Figure 9, the framework consists of an E2E Security Management Domain
(SMD) and as many independent SMDs as required to manage the underlying physical infras-
tructure. Although the design is hierarchical, each of these independent SMDs is capable of
autonomously managing resources through closed-loop processes such as self-* (observation,
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analysis, and decision-making). The E2E SMD performs the synchronization of multi-domain
tasks [36].

3.2.1 Closed-Loop Management

The closed-loop management cycle consists of proactive phases (e.g., initial deployment, con-
figuration) and reactive phases (e.g., anomaly detection, dynamic reconfiguration). The proac-
tive phase interprets service and security requirements defined in Security Service Level Agree-
ments (SSLAs) and Network Slice Templates (NSTs). These are converted into Medium-level
Security Policy Language for Orchestration (MSPL-OP) policies, which are used to configure
security assets across domains. The reactive phase involves real-time monitoring and analyt-
ics. If SSLA compliance is violated or a threat is detected, the system dynamically generates

mitigation policies and applies them through orchestration mechanisms in affected domains
[36].

3.2.2 Security Enablers

The framework employs a variety of specialized security enablers:

e V2X Aggregator: Collects and aggregates BSMs at the RSUs, enabling centralized
threat analysis.

¢ Reinforcement Learning (RL)-Based DDoS Detector: Utilizes spatial and temporal
patterns in vehicular traffic to identify anomalous behavior. This learning-based approach
adapts to evolving attack vectors and minimizes FPs.

e Filtering Assets: Implemented at the RSU level, these components filter traffic based
on policy thresholds such as BSM inter-arrival times, effectively discarding high-frequency
malicious transmissions.

e 5G Core and RAN Security Agents: These agents perform real-time reconfiguration
of radio and core network functions. For instance, they can isolate malicious vehicles by
redirecting them to uplink-disabled cells.

Each enabler is associated with a dynamic trust score, guiding the orchestration process during
policy enforcement.

3.3 Use Case and Evaluation Setup

To demonstrate the feasibility of the approach, a multi-domain V2X testbed was established
across two institutions (CTTC and UMU labs). The testbed deployed an E2E security slice
protecting V2X services hosted at the edge level. The framework autonomously deployed,
monitored and adapted configurations based on SSLA policies. To generate the set of multiple
DDoS attacks, the VeReMi dataset [9] was used in the evaluation phase. The VeReMi dataset
comprises the following DDoS attack variants:
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1. DDoS attack: Malicious vehicles transmit BSMs at a higher frequency than the ac-
ceptable limit set by the standard specifications. The frequency threshold considered in
this work is 4Hz, which is equivalent to an inter-arrival BSM time threshold of 250ms.

2. DDoS Random attack: In this attack, malicious vehicles set all BSM fields to random
values and perform a typical DDoS attack.

3. DDoS Disruptive attack: The malicious vehicles may re-transmit previously trans-
mitted BSMs by other legitimate vehicles, with the intention of disrupting genuine in-
formation from being propagated.

4. DDoS Random Sybil attack: The malicious vehicles change pseudonym identities on
every transmitted BSM while performing the DDoS random attack.

5. DDoS Disruptive Sybil attack: In this attack, the malicious vehicles change
pseudonyms on every re-transmission of previously received BSMs while performing the
DDoS disruptive attack.

Our selected performance indicators are defined as follows:

e Accuracy: The ratio of all correct predictions (i.e., TPs and TNs) to the total number
of considered input samples.

e Precision: The ratio of TPs to the number of TPs plus the number of FPs.

e Recall: The ratio of TPs to the number of TPs plus the number of FNs.

e F2-score: The weighted harmonic mean between precision and recall metrics. The F2-
score weights recall higher than precision’, to account for the higher importance of FNs

compared to FPs in safety-threatening V2X scenarios.

e False Positive Rate (FPR): The rate at which a legitimate vehicular behavior is identified
as malicious.

e False Negative Rate (FNR): The rate at which a malicious vehicular behavior is identified
as legitimate.

e Mean Time to Detect (MTTD): The average time elapsed between the time the DDoS
attack takes place and its discovery by the V2X DDoS detector.

e Mean Time to Resolve (MTTR): The average time elapsed between the time the DDoS
attack is detected and the enforcement of the mitigation (filtering) policy by the security
orchestrator.

In contrast, the traditional Fl-score weights equally both recall and precision.
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3.4 Performance Results
3.4.1 Secured V2X Slice Deployment Performance

The initial deployment time is an indicator of how long the framework takes from the time
the CTTC SMD receives the MSPL-OP until the sub-slice is deployed and configured, and
thus the service is ready to be used with all requested capabilities. The distribution of the
time consumed by the different processes with respect to the total time can be seen in Figure
10 (left), where the total time has an average of 97.42s, the deployment represents a 59% of
the time with 57.73s, the configuration of the V2X DDoS detector 38.99% with 37.99s and
the orchestration 1.75% with 1.84s in average. The orchestration time mainly joins the time
spent on the translation (0.17s avg.) and creation of the enforcement plan (0.97s avg.) in
addition to the load of the different managers and structures. The E2E time is omitted since
the other domains do not contain specific V2X enablers. Indeed, the time spent by the E2E
SMD is less than 1.8s on average for constructing all the required MSPL-OPs.
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Figure 10: (left) Proactive ZSM-based E2E B5G security slice deployment; (right) Reactive
ZSM-aligned trust-based multi-domain mitigation.

Attack type Accuracy (%) | Precision (%) | Recall (%) | F2 (%) | FPR (%) | FNR (%) | MTTD (ms) | MTTR (s)
DDoS 98.90 99.41 98.72 98.86 1.16 1.40

DDoS Random 99.78 99.88 99.66 99.70 0.42 0.45

DDoS Disruptive 97.96 99.01 96.96 97.36 1.23 3.17 4.2 1.48
DDoS Random Sybil 94.76 94.68 94.25 94.34 5.03 5.90

DDoS Disruptive Sybil 92.94 92.98 92.14 92.31 6.57 8.02

Table 4: Detection performance per DDoS attack variant.

3.4.2 Detection Performance

Table 4 demonstrates the detection performance per DDoS variant. Results show that RL-
based detection is performed effectively, with an F2-score superior to 92.5% for all five DDoS
attack types. Notably, the achieved precision and recall values demonstrate the ability of
our detector to accurately differentiate DDoS attack messages from genuine behavior. It can
also be observed that when DDoS attacks are launched in Sybil mode, detection performance
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registers a decline with increased FPR and FNR, albeit not at prohibitive levels. The reported
MTTD on average across all DDoS attacks, is in the order of 4ms, which is effective for many
road safety applications, as BSMs usually broadcast with frequency of 1-10Hz [37]. Such low
detection latency levels corroborate the real-time capabilities of our V2X DDoS detector.

3.4.3 Local and E2E Reaction Performance

The E2E reaction performance refers to the time elapsed since the alert of the DDoS attack is
triggered until the framework has mitigated the attack, both at the local domain by the V2X
filtering asset, and at the E2E level by banning the vehicles from the cells. As shown in Table
4 and Figure 10 (right), the local mitigation time (MTTR) has an average of 1.48s, which
includes the mitigation security policy creation and the enforcement via reconfiguration of the
V2X aggregator. Such value is considered acceptable for mitigating the detrimental effects
on road users and avoiding the propagation of safety-threatening incorrect information by
malicious vehicles. The E2E reaction time (E2E MTTR) has an average value of 12.82s which
includes (i) the escalation of the alert to the E2E SMD, (ii) the E2E orchestration (creation
of the MSPL-OP for the UMU domain), (iii) the extraction of the required information at the
UMU domain for the malicious vehicle from the 5G core, and (iv) the 5G RAN reconfiguration
enforcement to ban the malicious vehicle. Both reactions are executed in parallel, thus the
total time is equal to the E2E MTTR.

3.5 Summary

This study demonstrates the feasibility of a ZSM-based security framework to manage the
complex V2X characteristics in B5G networks. Our approach reveals how the benefits of
policy flexibility are leveraged to deploy slices for V2X services with security requirements and
an E2E perspective. Such autonomous management of V2X services, driven by a policy-based
closed-loop, allows adaptation to the complex and highly dynamic V2X security landscape.
Our proposed framework ensures automated reaction to security attacks, not only in the
domain where the attacks are launched but also in other domains that could be affected or
used to mitigate the attack more efficiently. We assessed the detection capabilities of our
framework in the presence of different DDoS attack variants launched by multiple vehicles in
a multi-domain V2X scenario. Performance evaluation demonstrated that DDoS attacks can
be effectively detected and contained with relatively low latency levels.
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4 Misbehavior Detection Using a Hybrid DL Framework

4.1 Introduction

While the DRL-based approach described in Section 2 is tailored toward decentralized V2X
environments, we hereby describe a centralized misbehavior detection approach that leverages
a hybrid DL framework. In the first stage, unsupervised learning techniques adapt to the
dynamic nature of V2X traffic patterns, overcoming the scarcity of labeled data for attacks.
This stage efficiently identifies potential anomalies. Building upon this foundation, the second
stage employs supervised learning to refine the classification and achieve high accuracy in real
time.

4.2 Methodology

By using this two-staged approach we can take advantage of the unsupervised anomaly de-
tection and supervised learning to achieve an efficient and adaptable misbehavior detection
system.

4.2.1 Stage 1: Unsupervised Pre-training (Anomaly Discovery)

The first stage of the framework consists of the following steps:

1. Data Preprocessing: Raw V2X data is transformed to extract relevant information.
Specifically, it focuses on BSMs and converts them into sequential data.

2. Unsupervised Anomaly Detection: A deep learning model, trained without labeled data,
analyzes the BSM sequences. It attempts to reconstruct these sequences and calculates
a reconstruction error. A high error indicates a potential anomaly.

3. Thresholding: An algorithm sets a threshold based on the reconstruction errors. This
threshold helps distinguish normal BSM sequences from anomalous ones.

4. Label Generation: Using the established threshold, the model classifies each sequence
as either normal or anomalous. This creates a labeled dataset for the next stage.

4.2.2 Stage 2: Supervised Learning for Classification

The second stage of the framework consists of the following steps:

1. Supervised Model Training: The labeled dataset generated in stage 1 is used to train
a supervised DL model. This model learns the relationship between BSM features and
the assigned labels (normal or anomalous).

2. Real-Time Anomaly Classification: During deployment, the trained model receives in-
coming BSM sequences as input. It analyzes the features within these sequences and
classifies them as normal traffic or potential attacks in real time.

This approach leverages unsupervised learning to discover potential anomalies in the initial
stage. The subsequent supervised learning stage refines the classification using the generated
labels, resulting in a more robust and accurate anomaly detection system.
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4.3 Data Preprocessing
4.3.1 Dataset Selection

This evaluation utilized the publicly available VeReMi Extension dataset [9]. Designed as a
reference for V2X network misbehavior detection, it was generated through the open-source
simulation tool VEINS. While simulated, the scenario reflects real traffic data from the Luxem-
bourg SUMO Traffic (LuST) scenario. The dataset encompasses 19 attack types and includes
features like send time, sender IDs (real and pseudo), message ID, and positional information
(position, speed, acceleration, heading).

4.3.2 Feature Selection and Windowing

We employed specific features for analysis: send time, X and Y coordinates from position and
speed vectors, and sender pseudo ID. Due to the time-series nature of the data, it's segmented
into windows. A window size of 20 and a step size of 10 were chosen, aligning with previous
works using the VeReMi Extension dataset.

4.3.3 Normalization

Before feeding the data into the models, normalization is performed using a standard scaler.
The following equation represents this normalization process:

z=(x—u)/s, (20)

where z is the normalized data, z is the original data, u represents the mean and s the standard
deviation.

4.4 First stage

This stage leverages three different Deep Neural Network (DNN) architectures for unsupervised
anomaly detection:

e Model 1 (M1): LSTM Autoencoder: This model employs two encoder and two decoder
layers, each containing 1024 and 512 LSTM units, respectively.

e Model 2 (M2): CNN-LSTM: This architecture combines convolutional and recurrent
layers. It consists of two convolutional layers with 1024 and 512 units followed by four
stacked LSTM layers, each with 512 units.

e Model 3 (M3): CNN-BILSTM: This model is similar to M2 but utilizes Bidirectional
LSTMs (BiLSTM) in the stacked layers. It has two convolutional layers (1024 and 512
units) followed by four stacked BiLSTM layers.

4.4.1 Input

Each model receives sequences of 20 messages with six features per message (X and Y co-
ordinates from position and speed vectors, send time, and sender pseudo ID) as input. The
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objective is to identify anomalies by reconstructing the input sequences and analyzing the
reconstruction error.

4.4.2 Model Training and Reconstruction Error

During training, each model is exposed only to normal sequences. This allows it to learn the
typical patterns and values associated with genuine V2X communication. When presented with
a new sequence, the model attempts to reconstruct it. ldeally, the reconstructed sequence
should closely resemble the original sequence, resulting in a low reconstruction error (calculated
using the mean squared error).

4.4.3 Anomaly Threshold

High reconstruction errors indicate a potential anomaly. A separate thresholding algorithm
utilizes these errors to distinguish normal sequences from anomalous ones. This thresholding
step plays a crucial role in isolating potential attacks or malfunctions within the V2X network.
Figure 11 summarizes the steps of the first stage.

Input LSTM |l | LSTM

'/ I '/ LSTM | mms LSTM Output Thresholding
! ! ’ ! Algorithm

Model 1{M1) : LSTM Autoencoder

Figure 11: First stage

4.4.4 Thresholding Algorithm

Within the first stage, the thresholding algorithm plays a critical role in classifying sequences
as anomalous or genuine. It operates on the reconstruction errors generated by the DNN
models. The threshold selection for optimal F1-Score is as follows:

e Threshold Evaluation: The algorithm iterates through a predefined list of potential
thresholds. At each step, it calculates the F1-Score of the resulting dataset. The F1-
Score is chosen because it balances precision (correctly identified anomalies) and recall
(reduced false positives) — crucial factors in real-time V2X applications.

e Performance Analysis: The algorithm analyzes performance metrics (potentially includ-
ing precision, recall, and F1-Score) across different thresholds. The primary objective is
to identify the threshold that maximizes the F1-Score.

SUCCESS-6G: DEVISE 33/39 TSI-063000-2021-40



Version 1.0, 31/03/2025

e Visualization: As depicted in Figure 12, a visual report can be generated to illustrate
the variation of performance metrics with respect to threshold values. This visualization

aids

in understanding the impact of threshold selection on anomaly detection accuracy.
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Figure 12: Report Visualization from thresholding algorithm

The chosen threshold is then used to classify each sequence as anomalous (reconstruction
error exceeding the threshold) or genuine (error below the threshold). This process creates a
labeled dataset that serves as input for the supervised learning stage in the next phase. This
approach eliminates the need for extensive manual labeling, which is impractical in real-time
V2X scenarios.

4.5 Second stage

The second stage focuses on supervised learning for real-time misbehavior detection during
deployment. This section details the configurations of the two DNN models employed:

e Model 1 (S1): CNN: This model leverages Convolutional Neural Networks (CNNs)

for classification.

It comprises two 2D convolutional layers with 256 and 128 units,

respectively. These are followed by two dense layers with 100 and 10 units. The final
output layer is a dense layer with a single unit activated by the sigmoid function, suitable
for binary classification (attack vs. genuine).

e Model 2 (S2): Stacked LSTM: Inspired by findings in related work, this model utilizes
a stacked Long Short-Term Memory (LSTM) architecture. It consists of four LSTM
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layers, each containing 256 units. Similar to S1, the final layer is a dense layer with a
single unit and sigmoid activation for binary classification.

4.6 Simulation Results

This section presents the obtained results for all the models along with details about the
training, testing, and validation data splits.

4.6.1 Training and Testing Setup

e Development Environment: TensorFlow was used for model development.

e Training and Testing Platform: Google Colaboratory was employed for training and
testing the models.

Data Splits:
e Unsupervised Learning Dataset:
— Training set: 66,500 sequences (3,500 genuine sequences from each attack sce-
nario)

— Testing set: 15,200 sequences (7,600 attack sequences and 7,600 genuine se-
quences)

— Rationale: The training set exposes the models to all genuine behaviors by including
genuine sequences from each attack scenario.

e Supervised Learning Dataset:

— Training set: 15,200 sequences (generated by the unsupervised stage)
— Testing set: 30% of the total dataset (4,560 sequences)
— Validation set: 10% of the total dataset (1,520 sequences)

Training Details:
e Unsupervised Learning:

— Optimizer: Adam

— Loss function: Mean Absolute Error (MAE)
— Batch size: 20

— Epochs: 100 (each model)

e Supervised Learning

— Optimizer: Adam
— Loss function: Binary Crossentropy

— Early Stopping: Implemented to prevent overfitting
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4.6.2 First Stage Evaluation

Table 5 presents the obtained results for all the models in the first stage.

Model Class Precision Recall F1-Score Accuracy
MU Gaine 058 10 o0s 0%
M2 Gomine 0% 0% oo 09719
M3 Gane 0% 0% oo  O%%

Table 5: First Stage Results

4.6.3 Hybrid Approach Evaluation

Table 6 presents the obtained results for the proposed hybrid approach.

M1 S1 S2 Optimization
Precision 0.9964 0.9865 0.9830 -0.99%
Recall 0.9825 0.9956 0.9944 +1.33%
F1-Score 0.9894 0.9910 0.9887 +0.17%
Accuracy 0.9895 0.9911 0.9887 +0.16%
Parameters 15 Million 1.3 Million 2 Million +91.33%
Prediction Time | 0.1666 seconds | 0.0661 seconds | 0.0759 seconds +60.24%

Table 6: Hybrid Approach Results
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