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Executive summary

Dependable measurement data are essential for the accuracy and integrity of vehicular state
estimation by the maintenance center, which performs condition monitoring tasks. However,
vehicular networks are often subject to missing sensor observations due to -among others-
channel stochasticity, hardware failures, and security attacks. In this deliverable, we study the
problem of missing data in the vehicular measurement streams. We discuss the mechanisms
that causally induce occlusions and investigate the ability of various imputation methods to
fit the observed data at the aggregation point, and to impute missing values by extracting
knowledge from the spatiotemporal synergy among the ambient vehicular measurement space.
A rigorous assessment of various missing data configurations based on empirical evaluations
reveals meaningful performance trends for model fitting and recovery of incomplete informa-
tion. Our results demonstrate that rSLDS-based imputation can exploit the spatiotemporal
relationships among measurements to make accurate inferences about missing V2X data. By
mitigating the impact of unreliable wireless channels at the data layer, imputation offers an
Al-driven approach to enhancing reliability, efficiency, and overall performance. Its integration
into both existing and future V2X frameworks represents a proactive step aligned with ongoing
standardization efforts toward intelligent and resilient vehicular communication systems.
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1 Introduction

The emerging potential of Vehicle-to-Everything (V2X) communication is a cornerstone of
intelligent transportation systems, enabling cooperative, connected, and automated mobil-
ity (CCAM). V2X networks are designed to support ultra-reliable, low-latency, and high-
throughput communications. However, in realistic network environments, the wireless medium
is inherently unreliable. Signal interference, multipath fading, shadowing effects, and network
congestion lead to packet losses, partial data reception, and temporal inconsistencies. These
impairments collectively compromise the accuracy of data-driven inference mechanisms that
depend on consistent, high-fidelity information streams.

More specifically, in condition monitoring systems, the acquisition of dependable V2X data
is essential for the accuracy and integrity of vehicular state estimation by the maintenance
center [1]. Data aggregation points located at the network edge combine vehicular measure-
ment trajectories captured at different locations and time instances to describe the evolution
of vehicular state and model the rich interactions between quantities that co-evolve in time.
However, vehicular networks are often subject to missing sensor observations due to the in-
herent unreliability of the wireless channel, hardware/equipment failures, security attacks, etc.
Incompleteness in the aggregated data unavoidably affects the downstream processing tasks,
leading to incomplete vehicular state knowledge, posing risks in effective decision-making.

The current V2X radio interfaces, as defined by standards such as 3GPP Release 17/18 for
C-V2X and |IEEE 802.11bd, have made significant progress in supporting advanced vehicular
communication use cases. Nonetheless, both technologies face persistent limitations when
operating in highly dynamic, interference-rich environments—conditions typical of urban mo-
bility scenarios and dense vehicular traffic. Traditional error-control mechanisms (e.g., HARQ,
retransmissions, and channel coding) provide some resilience against transmission losses but
are insufficient when data degradation occurs in structured, context-dependent patterns (e.g.,
temporally correlated packet losses or geographically localized interference). These conditions
result in missing or incomplete data at higher network layers, undermining the performance
of data-driven services such as condition monitoring, predictive maintenance, or distributed
sensor fusion.

To address this challenge, there is a need for data-driven radio interface enhancements that
explicitly integrate missing-data imputation techniques into the V2X communication frame-
work. By leveraging machine learning and statistical modeling, imputation methods can infer
and reconstruct missing information, effectively mitigating the impact of channel imperfections
at the data-processing layer rather than the physical layer alone. We provide the details in the
following sections.
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2 The Problem of Missing Data in V2X Systems

Aggregating measurement streams is an essential task for the conversion of raw V2X data into
meaningful information. This process determines the integrity of the transmitted data and the
resilience of the acquisition infrastructure. Nevertheless, a key challenge in achieving efficient
data fusion and subsequent knowledge extraction lies in the completeness of the aggregated
information. In practice, the emergence of missing data in the fused measurement streams is
inevitable [2]. Missing information can be generally attributed to the following factors [3]:

1. Hardware failures: Hardware component malfunctions, such as synchronization failures
or inaccuracies in vehicular sensor readings, may result in persistent missing observations
for one or multiple state variables. Moreover, the intermittent availability of energy for
sensors operating with renewable sources may cause interruptions in their operation,
resulting in gaps in the data acquisition process. In the case of interconnected systems,
hardware failures may inadvertently occur in a cascade, where neighboring sensors be-
come progressively and rapidly compromised. Dealing with cascade data occlusions with
temporal dependence is often challenging, impeding the efficacy of the reconstruction
techniques.

2. Software failures and user data entry errors: Software failures can always cause data
loss, as can user data entry errors in the case of manual entry of data values. For
example, erroneous configuration values for various sensors can result in wrong default
or threshold values in case of outliers.

3. Connectivity issues: The imperfections of the underlying communication infrastructure
in vehicular systems constitute an inseparable aspect of the data acquisition procedure.
In fact, the shared wireless medium is inherently unreliable due to signal interference,
network congestion, and multipath effects. Such adverse conditions may result in con-
nectivity outages and packet losses, possibly across consecutive time steps. Overall,
the induced signal distortion leads to aggregated data inconsistencies and partial system
observability, which, in turn, may adversely affect the inference methods at the edge.

4. Security attacks: The pervasive digitalization of vehicles expands the attack surface and
introduces vulnerabilities and threat vectors, opening up entirely new questions from
the perspectives of security and privacy. Across all stages of the data acquisition chain,
several entry points become available for potential adversaries to exploit and execute
malicious attacks. For example, zero-injection measurements in the form of systematic
modification of monitoring information may perniciously affect the normal operation of
the vehicular system.
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3 Missing-Data Imputation

To overcome data incompleteness in vehicular systems, a plausible strategy would involve
the straightforward exclusion of unobserved samples. Although effective when dealing with a
limited number of incomplete samples, this method could introduce bias and lead to the loss
of valuable contextual information in vehicular condition monitoring systems. Consequently,
a more pragmatic approach to managing missing values is through imputation, where the
missing values are substituted with one or a set of estimations.

Missing-data imputation represents a paradigm shift from traditional redundancy-based
error correction. Instead of retransmitting or over-provisioning network resources, imputation
leverages the inherent structure and correlation in vehicular data streams, such as spatial
proximity, temporal continuity, and cross-sensor dependencies, to estimate missing or corrupted
information. This approach aligns with current trends in Al-native communications envisioned
by 3GPP’s “Al/ML for the Air Interface” initiatives and ongoing work within ETSI TC ITS
and IEEE 802.11bd Next Generation V2X (NGV2X) discussions.

The fundamental problem of missing-data imputation among signals captured from a phys-
ical process has been extensively studied in the literature. A comprehensive study of likelihood-
based imputation methods with general applicability, such as expectation maximization (EM)
and data augmentation, is provided in [4]. While computationally efficient, conventional im-
putation methods, such as linear, cubic, or nearest neighbor interpolation, fail to incorporate
cross-correlation relationships in the ambient measurement space. This motivates the adoption
of imputation methods based on singular value decomposition (SVD). The key characteris-
tic of such methods lies in their capacity to infer linear relationships among measurement
streams, thereby enabling the reconstruction of missing values in a data stream based on ob-
servations from the remaining ones. In [5], the missing values were inferred by applying an
iterative scheme based on low-rank decompositions. It was noted, however, that SVD-based
approaches do not inherently preserve temporal smoothness and become sensitive to transient
content and outliers present in the measurements [6].

Dynamical systems that are capable of exploiting spatiotemporal correlations among mea-
surement streams can be employed in an iterative strategy to estimate missing values [7].
Formally, dynamical systems concern the analysis, prediction, and understanding of the behav-
ior of systems of differential equations or iterative mappings that describe the evolution of the
state of a system. This formulation is general enough to cover a wide range of phenomena,
including those observed in vehicular systems. Since it is plausible that the time series of
measurements may not be sufficiently described by a single linear dynamical system (LDS)
as shown in [7], in our previous work [8], we employed more sophisticated models, such as
the switching linear dynamical system (SLDS) and the recurrent switching linear dynamical
system (rSLDS) [9], to address underfitting.

In [8], missing value imputation is characterized by the following steps. First, missing values
are reconstructed using linear interpolation, and parameters are initialized with respect to their
prior distributions. Then, belief propagation is used to compute the posterior expectations of
latent variables, considering both the aggregation of observed and interpolated data, along with
prior parameter values. In the third step, the estimated parameter values are updated through
maximum likelihood by using the expected values of latent variables. Finally, imputation is
carried out by computing the conditional expectation of the missing values with respect to the
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values of observed variables, the posterior expectations of latent variables, and the updated
parameter values. The iteration proceeds by updating the posterior expectations of latent
variables, incorporating the aggregation of observed measurements and the newly imputed
values of missing variables, until convergence is achieved.

Within the context of V2X systems, imputation techniques can be integrated into multiple
layers of the protocol stack:

e At the radio interface layer, where physical and MAC layer metrics (RSSI, SINR, CQI)
inform imputation models of likely data quality.

e At the network and application layers, where contextual vehicular data (e.g., position,
speed, heading angle) can support the estimation of missing perception or control mes-
sages.

e At edge computing nodes, where aggregated data from multiple vehicles can be fused
and reconstructed collaboratively, improving both reliability and situational awareness
across the monitoring infrastructure.

This multi-layer integration enables a cross-domain mitigation of radio-induced imperfections,
enhancing the dependability of V2X-based inference systems without requiring fundamental
redesigns of the underlying physical layer.
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4 Imputation Performance

4.1 Dataset Description

The VeReMi dataset [10] includes 19 anomaly types (misbehavior attacks) and models two
road traffic densities: high-density (37.03 vehicles/km2) and low-density (16.36 vehicles/km2).
A log file per vehicle is generated, which contains basic safety messages (BSM) transmitted
by neighboring vehicles over its entire trajectory. Each attack type dataset contains a ground
truth file to record the observed behavior of all participating vehicles. BSMs constitute a
three-dimensional vector for position, speed, acceleration, and heading angle features. Figure
1 depicts a raw sample of BSM data for a single vehicle.

For subsequent imputation analysis, we have considered the log file for a single vehicle
and kept only the genuine information by properly removing the misbehaving attack data,
since the attack detection and classification are considered irrelevant tasks to our problem.
Synthetic dropouts are then used to generate missing data by selecting space-time points for
occlusion. This step is performed using the library pyampute, where a multivariate amputation
procedure is implemented, enabling the introduction of different missingness patterns. In
our experiments, we considered both noncontiguous and contiguous missingness patterns;
noncontiguous occlusions are generated by uniformly selecting space—time points for dropout,
whereas contiguous occlusions are generated by dropping consecutive measurements of varying
time length starting at a random point in time.
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Figure 1: BSM data for a specific vehicle (ID:33) in VeReMi
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4.2 Results

For performance comparison, we considered the following four data imputation schemes: /) a
reconstruction method that uses a Gaussian mixture model (GMM) regressor with parameters
obtained by an EM algorithm [11]; ii) a method based on SVD, which transforms the weighted
low-rank approximation problem into a maximum-likelihood problem with missing values and
approximates them by computing the SVD iteratively [5]; iii) a k-means clustering imputation
approach where missing values are imputed by the corresponding value from the centroid of
the nearest cluster [12]; and iv) an rSLDS-based imputation method with Bayesian parameter
learning using blocked Gibbs sampling [8]. The performance of those imputation schemes
is contingent upon carefully selecting suitable values for their hyperparameters. Considering
computational resources, hyperparameters were judiciously tuned by carrying out a limited
hyperparameter search following the configurations outlined in each work.

The effectiveness of imputation (reconstruction) is first evaluated in terms of the mean
squared error (MSE), defined as the average of the squared differences between the real and
reconstructed missing measurements. To reduce random effects, we repeated each simula-
tion 100 times and reported the average MSE. The average MSE is less sensitive to outliers
or random fluctuations, offering a more reliable and representative measure of missing-data
reconstruction and model fitting performance.
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Figure 2: Imputation performance for noncontiguous occlusions.

In the case of noncontiguous occlusions with a varying percentage (1%, 5%, 10%, and 20%)
of missing measurements, Figure 2 illustrates the imputation performance in terms of the MSE.
For all schemes, it can be observed that, as expected, the imputation performance registers
a decline with a growing percentage of missing entries. Notably, rSLDS-based imputation
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is capable of drawing useful knowledge from the observed measurement streams to make
valid inferences for the missing data and achieve the lowest MSE levels. As such, rSLDS-
based imputation is shown to be more robust to missingness. This is in stark contrast to the
level of degradation registered by the k-means-based and GMM-based methods, which can
be attributed to the inability of such schemes to adequately capture the governing nonlinear
dynamics, thereby limiting their effectiveness in estimating missing values.

To further shed light on the imputation performance, Figure 3 illustrates the R? score for
different missingness percentages. The R? score depicts how well imputed data align with
ground truth. In particular, a decreasing R? shows how well the structure is preserved as
missingness increases. Compared to other imputation methods, the superiority of rSLDS-
based imputation is notable, as it maintains a high R? score, thereby preserving the structure
of the original data.
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Figure 3: R? between imputed and true values for noncontiguous occlusions. The shaded
regions show the confidence intervals across repetitions (e.g., multiple random missingness
patterns).

The computational performance of the various imputation methods is compared in Figure
4. It can be observed that, with an increasing percentage of missingness, the computation time
required for imputation increases, making certain methods, such as GMM-based imputation,
scale poorly. It is also noted that the increased accuracy of rSLDS-based imputation comes with
the inadvertent cost of elevated computational complexity (i.e., in terms of the computation
time) compared with SVD-based imputation.

In the case of contiguous occlusions with varying occlusion lengths (i.e., in terms of con-
secutive missing time steps), similar insights can be drawn. As shown in Table 1, rSLDS-based
imputation achieves the lowest MSE scores among the examined methods. In particular, even
in the case of 50 consecutive missing entries, where the temporal information is limited to
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Figure 4. Computation time vs. missing data for noncontiguous occlusions. The shaded
regions show uncertainty or variability (e.g., over multiple runs).

relatively distant time steps, the performance of the MSE does not escalate to prohibitive
levels as observed with the k-means-based and GMM-based methods. Similar to the trend
reported in Figure 4, the increased accuracy of rSLDS-based imputation comes at the expense
of increased computation time compared with SVD-based imputation. Notably, the elevated
computation times compared to the case of noncontiguous occlusions may pose a challenge
for real-time vehicular applications with stringent latency requirements.

Imputation method | Metric Occlusion length (time steps)
10 20 30 40 50
GMM-based [11] M.SE 0.122 | 0.167 | 0.253 | 0.338 | 0.41
Time (s) | 35.16 |44.25 | 56.37 | 68.91 | 86.67
SVD-based [5] M.SE 0.086 | 0.11 0.147 | 0.172 | 0.205
Time (s) | 10.41 | 12.02 | 1495 | 2291 | 29.34
MSE 0.146 | 0.198 | 0.385 | 0.567 | 0.662
k-means-based [12] _
Time (s) | 20.46 | 28.38 | 3457 | 49.16 | 64.21
'SLDS-based [8] M.SE 0.067 | 0.093 | 0.118 | 0.133 | 0.156
Time (s) | 11.16 | 15.61 | 18.88 | 26.67 | 37.21

Table 1: Imputation performance and computation times for contiguous occlusions
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5

Alignment with Standardization Activities

The proposed imputation enhancements align closely with ongoing standardization trends
emphasizing data resilience and Al integration in next-generation vehicular communications:

3GPP Release 18/19 (C-V2X Evolution) includes studies on Al-native functionalities for
radio resource management and reliability enhancement. The inclusion of imputation
within the radio interface can be positioned as a complementary mechanism for data
reliability assurance.

IEEE 802.11bd and future NGV2X specifications are expanding support for machine-
learning-assisted link adaptation and reliability prediction, providing a framework that
can incorporate data imputation for upper-layer robustness.

ETSI ITS-G5 and ETSI EN 302 890-2 emphasize cooperative awareness and perception
data sharing. Imputation can directly enhance the cooperative perception messages and
collective environment model frameworks by reconstructing missing sensory data.

ISO TC204 WG16 promotes interoperability and cross-technology data consistency. Im-
putation aligns with these goals by ensuring consistent data availability across hetero-
geneous communication interfaces.

Thus, the integration of data-driven imputation within the V2X radio interface is not a
divergence from standardization but a natural evolution aligned with the industry’s movement
toward Al-empowered and context-aware communication systems. Incorporating imputation
techniques at the radio interface level is expected to yield substantial performance benefits,
such as

Reduction of effective data loss rates without increasing spectral overhead.

More robust operation of cooperative perception and decision-making algorithms in the
presence of imperfect network conditions.

Reduced need for retransmissions or redundancy mechanisms, optimizing spectrum and
energy utilization.

Compatibility with existing V2X protocol stacks and ease of integration into emerging
5G-advanced and 6G vehicular frameworks.
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6 Final remarks

In summary, this deliverable introduces a targeted enhancement to the V2X radio interface
through the adoption of missing-data imputation. Using an open-source dataset, and creat-
ing synthetic dropouts, we have evaluated the reconstruction error for different imputation
methods and missing data configurations. The objective was to assess the ability of imputa-
tion to mine measurement streams under incomplete received data. Performance assessment
revealed that rSLDS-based imputation is capable of extracting knowledge from the spatiotem-
poral synergy among the respective measurements to make valid inferences for the missing
V2X data.

By addressing the limitations imposed by unreliable wireless channels at the data layer,
imputation provides a complementary, Al-enabled pathway to improved reliability, efficiency,
and performance. The integration into existing and emerging V2X frameworks represents
a forward-looking approach that aligns with the standardization community's efforts toward
intelligent, resilient vehicular communication systems.
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