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Executive summary

This deliverable addresses the need for efficient computation in vehicular-to-everything (V2X)
systems by exposing the potential application of two innovative technological solutions: /)
source-channel coding to enable resource-efficient computation over the wireless medium and
i) coded computing to allow efficient distributed computation under faulty computation nodes.

In the case of computation over the wireless medium, we consider distributed decision-
making scenarios, where independent measurements from multiple network nodes, such as
connected vehicles, are sent to a central node for aggregation, often to compute a function
like the average of vehicle velocities. Traditional methods involve encoding each measurement
separately and requiring coordinated channel access to decode and aggregate the data. A more
efficient approach, known as over-the-air computation, leverages the superposition property
of wireless channels, enabling simultaneous transmission of encoded signals and direct com-
putation of their sum. This document introduces the concept of compute-forward schemes,
which use structured codes to facilitate this approach. However, practical challenges such as
synchronization limitations are addressed through lossy source coding, where measurements
are compressed and transmitted with reduced precision. The edge node receives both dig-
ital compressed messages and an analogue combination of the measurements, enabling the
reconstruction of a desired linear combination with tolerable distortion.

In the case of coded distributed computing, we consider the situation when we require
distributing a computation task into many nodes in order to process large amounts of data with
stringent latency requirements, as is the interest in V2X communications. For this setting, we
consider the design of multivariate polynomial coding schemes which have recently been proved
useful to trade-off between computation speed and communication costs. We first formulate
the computation latency-communication trade-off in terms of the computation complexity and
communication overheads required by coded computing approaches as compared to a single
server uncoded computing system. Then, we propose two novel multivariate coded computing
schemes supporting arbitrary matrix partitions. The proposed schemes are shown to improve
the studied trade-off as compared to univariate schemes.
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1 Source-Channel coding for computation over the wire-
less medium

1.1 Introduction

In distributed decision-making scenarios involving multiple network nodes, such as connected
vehicles, it becomes essential to gather independent (though occasionally correlated) mea-
surements from these nodes. These measurements are transmitted over a wireless link to a
central node for processing. Often, the central node is only concerned with a specific aggregate
function of the data, such as the mean value or another function derived from the individual
signals. For example, in vehicular networks, a roadside edge node might need to calculate the
average position, speed, or acceleration of a group of vehicles to enhance traffic coordination,
optimize flow, or support platooning.

A straightforward approach would involve each vehicle independently encoding its measure-
ment (e.g., its velocity vector components) using error-correcting codes for reliability. These
encoded signals would then be transmitted over the wireless medium, and the receiving node
would decode each one individually before computing the average of all velocity measurements.
However, with multiple nodes transmitting simultaneously, this method demands a coordinated
channel access strategy to distinguish the encoded signals. This traditional process is known
to be inefficient.

In contrast, a more advanced technique, known as over-the-air computation, offers a
smarter alternative. This method encodes the signals so they can be transmitted simultane-
ously using the same time-frequency resources. The core principle of over-the-air computation
exploits the natural superposition property of the wireless medium, enabling the signals to be
combined in the air to directly compute a sum. This synergistic approach eliminates the need
for separate decoding and simplifies the aggregation process.

1.2 Source and channel coding for computation

Over-the-air computation has been studied traditionally in the context of channel coding.
However, it also applies to the dual setting of source coding, as we shall explain below.

1.2.1 Channel coding

In the channel coding setting, as depicted in Figure 1, the goal is to have encoders map digital
messages m, and ms to encoded blocks of symbols x; and @5, which get transmitted over
a noisy wireless channel, before being received and processed by a decoder which directly
attempts to recover a linear combination w = a;x; + asxy of the encoded blocks (which
translates back to some linear combination of the messages m; and ms, since the codebooks
are linear). This setting was proposed in [1] and exhaustively studied in follow-up publications,
including [2, 3, 4].
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noisy channel

w (estimate of w = ajx; + asxs)

Figure 1: Coded computation over the air (the “compute—forward” problem)

1.2.2 Source coding

The compute-forward scheme briefly presented above suffers from some practical limitations
when applied in the context of over-the-air computation. Notably, the synchronization of en-
coded signals must be very precise (on a frame and sub-symbol level). A more viable approach
in the context of vehicular communications is that of lossy source coding (compression). In
the source coding setting (Figure 2) that is a counterpart of the compute-forward setting from
Figure 1, the measurements x; and x5 are encoded into digital, lossily compressed messages
my and my, as depicted in Figure 2 below. These messages are forwarded over error-corrected
digital links with a limited rate (limited number of bits per time unit), which we assume to be
error-free (their specific implementation is not part of our system modeling).

In addition to the digital, quantized and compressed measurements m; and ms, the nodes
may also transmit an uncoded, analogue version of their measurements x; and x5 over a helper
channel on a dedicated frequency band. The edge node thus receives the digital messages m;
and my and, ideally, an analogue noisy linear combination y = hiyx; + hoxs + 2z of the
measurements x; and x,. The combination of these three observations is then used to
reconstruct a desired linear combination w up to some tolerable distortion margin D.

In the source coding setting, as depicted in Figure 2, the goal is to have encoders com-
press some (possibly correlated) source observations x; and x5 into digital messages m; and
mg, that get conveyed via a rate-limited uplink to the decoder, which attempts to directly
reconstruct a signal w that approximates a linear combination ayx; + asxs of the source
observations to within a target distortion D. Additionally, a variable y that carries some side
information about the sources x; and x5, can assist the decoder.

T encoder 1 m1
T2 encoder 2 ma

Figure 2: Distributed compression for sum recovery with side information (the “distributed
lossy computation” problem)

Yy
W (satisfying E[d(w, )] < D)
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1.2.3 Source and channel coding

Compute—forward schemes are based on the use of structured codes with an algebraic structure,
such as lattice codes or linear codes. Also note that compute-forward techniques were devel-
oped in the context of relay communication [1], rather than distributed sensing. Hence, instead
of measurement sources (correlated data sources), the compute—forward results were derived
for the encoding of digital messages (bit messages). For a direct application of compute—
forward results to our problem, we would need to lossily compress the analogue sources (de-
noted as x; and @, in Figure 2) into bit streams at the nodes (vehicles) before applying the
appropriate error-correcting codes.

noisy channel

vehicle
o
- | source M1 | channel |9S1 q q
: encoder 1 encoder 1|+ <~ N\ |« ______ ? 7gF7n70776 777777
[ ! ~ 1
777777777777777777777 B !
channel 3 source KN
777777777 vehicle ) decoder decoder |,
| o1 e/ VT - - __________/ |
- [ source M2 | channel |2
: encoder 2 encoder 2 :

Figure 3: Combined (but separate) source and channel coding for over-the-air transmission

In the separate approach depicted in Figure 3, the vehicle nodes perform a source coding
step, followed by a channel coding step. At the receiver side, the edge node performs these
two steps in reverse: a channel decoding step, followed by a source decoding step. The former
attempts to losslessly recover a linear combination £ = a;181 + as s, of the additive codewords
81 and ss.

A more efficient (but computationally more complex) alternative is to perform joint source-
channel coding. In this variant, as shown in Figure 4, the processing blocks are merged in
pairs, so as to yield the codewords. There is no requirement, in this setting, that source
coding and channel coding be performed separately. Accordingly, there is no requirement that
the decoder first recovers a linear combination £ before computing the desired (lossy) linear
combination of sources w.

noisy channel

vehicle
source—channel
L1 —
encoder 1 edge node
source—channel N
NS
vehicle decoder
source—channel
Lo —
encoder 2

Figure 4. Joint source and channel coding for over-the-air transmission

The next section explains the theoretical foundations of distributed lossy computation
(DLC) and presents an important theoretical result from our conference publication [5].
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1.3 Theoretical foundations of over-the-air computing

We have considered the problems of CF and DLC, where the goal is to recover one or more linear
combinations of the codewords (in case of CF) or the sources (in case of DLC) at the decoder.
For certain configurations, it is known that codes with algebraic structure can outperform i.i.d.
codebooks. For the special case of finite-alphabet sources, recent work [2, 3] has demonstrated
how to incorporate joint typicality decoding alongside linear encoding and binning. Following
the footsteps of [4] (for CF), our work uses a similar discretization approach to derive a dual
rate region for the DLC setting, that covers both integer- and real-valued sources. As a case
study, the rate region is evaluated for the Gaussian case. The resulting joint-typicality-based
rate region recovers and generalizes the best-known rate region for this scenario, based on
lattice encoding and sequential decoding.

1.3.1 Achievable rate region for CF

Consider the CF setting as depicted in Figure 1. In this problem, multiple messages m; through
my are encoded and sent over a noisy uplink channel, and a receiver attempts to simultaneously
(or sequentially) recover multiple linear combinations of the transmitted codewords in a reliable
manner. The main result of [4] is the derivation of the following CF rate region:

Zer(8)=J N U N{R. Ri) € RE:

S Ry < H(luly) — Hp(ulY) + ot HCB(u|Y)}. (1)
Here, we assume some arbitrary joint probability distribution Py, ... that is compatible
with the source distributions and the analogue helper channel Py 5, . ... In addition,

e Be A™K (e {L,..., K} generates a superlattice A(B) D A(A)

e ) iterates over all size-¢ matroids except the full matroid

e S iterates over bases of the dual matroid M*

e 7T iterates over bases of the matroid of [B]s.
Since in its general form, this result is rather opaque, it is instructive to evaluate this rate
region for a relevant special case. If we consider the special case of two users (K = 2) and

a single equation to be reconstructed (L = 1), as well as Gaussian auxiliaries and an AWGN
channel, then the rate region simplifies to the following expression:

N Lt P )
flor(®) = g o8 <||au2+P(||a||2||hu? - <aTh>2>> | ?

Here, we have set A = B =a' = [a; as] and AT = [hy ho].
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1.3.2 Achievable rate region for DLC

Now consider the dual problem in which multiple signal sources x| through x x are encoded in a
distributed manner into rate-limited representations, and a receiver attempts to simultaneously
(or sequentially) recover multiple linear combinations of these sources from said representations
in a reliable manner, while at the same time satisfying a distortion constraint for each desired

linear combination: R
E[d(Wg, Wg)] < Dg, for ¢ = 1, c ,L. (3)

Our main result in [5] consists in a rate region characterization, i.e., a direct formula that is
an analogue to (1) and that describes a set of rate tuples and an associated coding scheme
at which the DLC system can operate reliably, in the sense of arbitrarily low probability of
infringing the distortion constraints. Specifically, the rate region is a function of the weight
matrix A, defined as the following set of points:

2A) =JNUN{#.. k) e RE:

B M S§ T

S Ri > ~H([ulrlz]y) + He(ulY) — inf ’HCB(u\Y)}.

cety (M
keT (M)

Here, we assume some arbitrary joint probability distribution P, ., . that is compatible
with the source distributions and the analog helper channel P ;, . .,. In addition, the set
operations follow the same constraints as in the dual CF expression (1), i.e.,

e Bec A»K (c{L,..., K} generates a superlattice A(B) D A(A)
e ) iterates over all size-¢ matroids except the full matroid

e § iterates over bases of the dual matroid M*

e 7T iterates over bases of the matroid of [B]s.

Our main result consists in a proof that the above defined set Z(A) is a set of achievable
rates for the messages m,...,my. Once again, it is instructive to evaluate this rate region
for a relevant special case. If we consider the special case of two users (K = 2) and a single
equation to be reconstructed (L = 1), then the rate region, expressed as a function of a target
quadratic distortion E[(WW — 1W)2], boils down to the following formula:

1y (8l PRI~ pfaThy?)
RDLC(D)‘§10g< 1+ PIAIF)T ) )

(4)

where

p= (15 ) 5

and where A = B = a' = [a; ay], hT = [h; hy] and E[zx'|Pl. Unsurprisingly, this formula
is very reminiscent of the already well-known rate formula of the two-user compute-forward
problem (2). In a sense, Equation (5) can be considered a dual, source-coding counterpart to
the classic compute-forward result.
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1.4 Conclusion

The presented work [5] lays the theoretical foundations for efficient distributed lossy computa-
tion (DLC) schemes by exhaustively characterizing a unified rate region that encompasses (and
sometimes surpasses) previously known results. Together with earlier work on CF achievable
rate regions, these results lay the groundwork for studying the joint source-channel coding
problem for computation and elucidating fundamental tradeoffs between analog and digital
channel resource allocation in the context of vehicular communication, as well as for the
development of practical coded computation coding schemes.
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2 Communication-Efficient Fast Distributed Computa-
tion

Efficient computation solutions are essential for V2X systems due to the need for real-time,
high-speed communication and decision-making. These systems are designed to improve traffic
safety, enhance vehicle autonomy, and optimize traffic management by enabling vehicles to
communicate with each other, infrastructure, and various devices. In such dynamic and critical
environments, timely data processing is crucial. Delays in computation could lead to accidents,
inefficient traffic flow, or missed opportunities for safety interventions.

V2X systems need to process large volumes of data generated by vehicles' sensors, cam-
eras, and communication devices. However, the limited processing power and storage capacity
of vehicles or roadside units can hinder the ability to perform these complex computations
in real time. Environmental factors, like signal interference or loss caused by urban struc-
tures or weather, further complicate the situation by impacting data transmission quality and
computational accuracy.

As more and more data needs to be processed with smaller latency, it becomes essen-
tial to split the job into multiple subtasks and execute them on multiple servers in parallel.
These servers might be locally available or otherwise remotely available. In any case, we shall
consider clusters of computation nodes, i.e., servers including small, low-end, and unreliable
computational nodes which are severely affected by “system noise”, i.e., faulty behaviors due
to computation or memory bottlenecks, load imbalance, resource contention, hardware issues,
etc [6]. As a result, task completion times of individual workers become largely unpredictable,
and the slowest workers dominate the overall computation time. This is referred to in the
literature as the straggler problem. The code computing framework studied in this work can
play a crucial role in enhancing computations in V2X systems.

2.1 Introduction

Coded computing solutions are available for quite general family of polynomial functions.
However, more efficient algorithms can be found by focusing on a particular important set of
functions. In this work, we focus on Matrix-Matrix multiplication. Matrix-matrix multiplication
is a key operation in machine learning, however handling large datasets, as is usually the case
in V2X applications, on a single local computation unit within a reasonable time frame, is
usually unfeasible. To address this, distributed computing across multiple servers is required,
either locally or more frequently outsourcing the computations to remote servers. However,
modern servers often face "system noise,” which causes unreliable task completion times and
results in the "straggler problem,” where slow workers dominate computation time.

To tackle this issue, we adopt the coded computing framework [7, 8, 9, 10], which uses
maximum distance separable (MDS) codes. Unlike traditional methods that repeat tasks,
coded computing allows delayed tasks to be replaced, resulting in faster completion times.
Univariate polynomial codes, in particular, offer efficient decoding while balancing compu-
tational complexity and communication resources. For further details see, [10], and [11].
Follow-up works extended the results to secure matrix-matrix multiplications [12, 13], matrix
chain multiplications[14], among others.
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Table 1: Computation complexity and upload/download communications overheads for differ-
ent coded distributed computing methods

[ Method* R, 6T b0 T b [ d ]
epc pipepo +p1 — 1 [% Po—14p20 [ po—1+pgd | p1 — 1+ pid
Bi0 pop2p1 + po (p1 — 1) ];0—;11 o po—1+p0 | p1 — 1+ p1d
Bi2 pop1p2 + p2 (p1 — 1) 7;)11—;21 po — 1+ pod 5 pL—1+pio
Tri popap1 + pop2 (p1 — 1) | 2= J ) pr— 1+ pid

P1
*See following subsections for the definition of these abbreviations.

Building on prior works [15, 16, 17, 18, 19], recent research has extended these concepts
to secure matrix multiplication and matrix-chain multiplications. Some approaches also assign
multiple subtasks to each worker, enabling the exploitation of partial work done by stragglers.
However, univariate codes suffer from inefficiencies in upload communication costs. To address
this, bivariate polynomial codes were introduced, but they do not support generalized partition
schemes. In this work, we extend bivariate codes to accommodate generalized matrix partitions
and introduce two novel multivariate schemes that improve the trade-off between computation
complexity and communication overhead.

2.2 System Model and Problem Formulation

We consider the problem of outsourcing the task of multiplying two large matrices M, € Frox"™
and M; € F™*™ from a centralized master node to a more computationally powerful entity
with N parallel computation nodes/workers, see Figure 5. Matrix M, is partitioned into pg
partitions vertically and p; partitions horizontally. Similarly, matrix M is partitioned into p;
partitions vertically, and p, partitions horizontally

0,0 0,pi+1—1
Mi’ Mz Pi+1

pi—1,0 pi—1,pit1—1
M M

for i € {0,1}. The result of the multiplication of M, and M, as a function of its matrix
blocks, can be written as

MOO .. pgOpe-1
M = MyM, = : : (6)
Mpo=10 . . prpo—lp2—1
W|th M’I’Lo,ng — Zlel;%) M’I’Lo7n1 Minl,n2. .
Although coded computing is an efficient method to achieve lower computation latencies,
it incurs communication and computation complexity overheads.
We define the computation complexity overhead, &, as the increment in computation
complexity, i.e., number of element-wise multiplications, required by coded computing C'¢,
relative to the computation complexity in a single server, C°°. That is, C“¢ = C>° (1+9).
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i s
. s s
Master : : Master M

Figure 5: Distributed computational system.

The download communication overhead, ¢4, is similarly defined as the increment of the
cost of communicating the block matrix products from the workers to the master in coded
computing, CSC, relative to the cost of communicating the original product result from a
single server, C3°. That is OS¢ = C55 (1 + 4,).

The upload communication overhead is similarly defined as the increment in the cost of
communicating the coded block matrices from the master to the workers, relative to the
cost of communicating the original matrices M, and M; to a single server. That is C’&% =
Co (14 0up), and CFS = C33 (14 0u1)

2.3 Univariate Polynomial Codes

As a reference, we first provide the computation complexity and communication overheads for
a more general version of the univariate polynomial coding schemes considered in the literature,
e.g., entangled polynomial codes presented in [11, 20] and [10]. The original coding scheme
was described assuming that only one coded block matrix product is assigned to each worker.
Here, we describe its direct extension to support multiple coded computations per worker that
are executed sequentially. This extension provides more flexibility to the system design, as now
the number of matrix partitions is not limited by the number of parallel workers in the system.

With entangled polynomial codes (epc), the block matrices Mébo’bl) and M) are en-
coded with the polynomials

po—1p1—1

~ bo,b

MSPC<I> _ § ’ § Méo 1)Ip1;02b0+b1
bp=0 b1=0
p2—1p1—1

Mlep(:(x) — Z ZMl(plflfblrbZ)wp1b2+b1'

b2=0 b1=0

Observe that within the coefficients of the univariate product polynomial A€ (z) =
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MPS(z) MP(x), we can find the matrix blocks of the target matrix product. In particular,

1 : . : -
Mronz = J7PLT 0 ME©™ M™ "™ is given by the coefficient of the monomial zP1P2rotrinatri=l

of Mepe (). Moreover, the product polynomial has degree p;pspo + p1 — 2 and thus, via poly-
nomial interpolation we can recover its coefficients from R - = pipapo + p1 — 1 evaluations
of M (z).

2.4 Multivariate Coded Computing

In [21], a bivariate polynomial coding scheme was presented supporting partial computation
at workers and improving the upload communication costs, as compared to univariate coding
schemes for the case p; = 1. In contrast to univariate polynomial codes of degree d, for
which, any set of d + 1 distinct evaluation points guarantee decodability, for multi-variate
polynomials, there exists only a few known sets of multi-variate evaluation points for which
decodability can be guaranteed. With an independent random choice of the evaluation points
we can achieve almost decodability, that is, decodability with probability increasing with the
size of the operation field. The interested reader is referred to [22] for details on multivariate
polynomial interpolation and to [21, 23] for its application to coded computing. However,
as we will see here, to achieve low upload communications overheads, the evaluation set
must have structure. For simplicity, in this work we restrict the analysis to the multivariate
Cartesian product evaluation set. The Cartesian product set guarantees decodability and
provides the lowest possible upload communication overheads. However, it may require large
storage capacity at the workers in offline upload communication settings, i.e., if all the subtask
inputs are uploaded before any computation starts at workers.

For the tri-variate polynomial coding scheme, the block matrix inputs are encoded with

po—1p1—1
~rTri (bo,b1) 2o
My"(z,y) = E g M 0/t
=0b1=0
p2—1p1—1

W) = 3 S

=0b1=0

Observe that within the coefficients of the tri-variate product polynomial MTri(x,y, z) =
M{"i(x,y) M (y, z), we can find the matrix blocks of the desired matrix product. Specifically,
Mmom2 is given by the coefficient of the monomial z™0yP1~12"2 in MTri(x,y,z). Moreover,
the product polynomial has degree pg — 1 in x, po — 1 in 2, and 2p; — 2 in y. Thus, via
multivariate polynomial interpolation it is potentially possible to recover its coefficients from
R} = popa (2p1 — 1) evaluations of M (z,y,z). To obtain these evaluations, we consider
the Cartesian product set, X X ) x Z, with |X| = po, |V| = 2p; — 1 and |Z| = ps. Then, the

server broadcasts M_"(x,) for each (z,y) € X x ), and thus R1" = (2p1 —1)py = %’T,
and M{"(y, z) for each (y,z) € ¥ x Z, and thus RI" = (2p; — 1) po = —2. Then workers,

coordinated by the master can compute one-by-one all the products M (x,y, ).
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Figure 6: Average computation latency as a function of the communication overhead constraint
for the different coding schemes.

2.5 Numerical Results

We are interested in characterizing the trade-off between the average computation latency and
the upload/download communication overhead. For that, we search for the partition scheme
(po, p1, p2) that minimizes the average computation latency T'(po, p1, p2) while guaranteeing
bounded upload/download communication overheads. That is,

Millpy 1 p; T(P0s D1, P2) (7)

s.t. Oy < gu,o, 0,1 < &Ml, and §,; < §,, where 5’1},,01 5%1 and 5d are fixed system constraints
on upload and download costs. We solve the problem via Monte Carlo simulations. To model
the subtask completion time at workers, we consider the shifted exponential model, which is
a common model employed in distributed computing [7, 24]. Suppose that the completion
of the full task in a single server has an average completion time given by Try = Ty + Tg
where T} is a constant and T is exponentially distributed random variable with parameter .
Then, by partitioning the full task into K subtasks, the cumulative distribution function of
the completion time of each individual subtask 7 is

Fi(t) = P(T; <t)=1l-exp (—)\K (t —~ %)) :

and thus, 7 is the sum of a constant Tj; = % plus an exponential random variable with
parameter \; = \K.

We search over all partition schemes (pg, p1, p2) that satisfy all the communication overhead
constraints. Here we consider the particular case when 6u0 = (5u 1= (5d = (5ud To reduce the
search space, we further limit the maximum partition levels to satisfy pg < po and py < po

while p; is left unbounded. As an illustrative case, we choose + = 10 and T}, = N =300

1
by 10N
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workers and py = pa = 10. In Figure 6, we show the average computation latency as a
function of the communication overhead constraint for the three coded computing schemes.
As a reference, we also show the results obtained by forcing p; = 1 (dotted lines). We can
observe that the tri-variate scheme obtains the best performance in this situation, while the
univariate scheme is heavily penalized at low communication overheads.

2.6 Conclusion

We formulated the computation latency versus communication/complexity overheads trade
off analysis in distributed coded computing systems. We presented a novel multivariate poly-
nomial coding schemes supporting arbitrary matrix partitions, which, compared to univariate
polynomial codes, require lower upload communication overheads at the cost of increasing the
computation complexity.
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3 Final remarks

This deliverable explored two advanced technological solutions to enhance computation effi-
ciency in V2X systems: source-channel coding for resource-efficient wireless computation and
coded computing for effective distributed computation under faulty conditions.

For wireless computation, we introduced over-the-air computation and compute-forward
schemes, leveraging the superposition property of wireless channels for simultaneous transmis-
sion and computation of encoded signals. Practical challenges, such as synchronization, are
addressed with lossy source coding, enabling the transmission of compressed measurements
with reduced precision while still supporting accurate aggregation. In distributed coded com-
puting, we analyzed the trade-off between computation latency and communication /complexity
overheads. The proposed multivariate polynomial coding schemes, supporting arbitrary matrix
partitions, offer significant improvements over univariate polynomial codes, requiring lower
upload communication overheads at the cost of increased computation complexity. Together,
these contributions provide a comprehensive framework for efficient distributed computation
in V2X systems, improving both scalability and performance in distributed environments.
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