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Executive Summary

Secure and trustworthy condition monitoring of vehicles’ health is crucial to guarantee the seamless
and robust operation of predictive maintenance systems for vehicles. Information exchange between
the vehicle and the maintenance control center needs to take place in a secure and robust manner
with the aid of advanced security mechanisms able to detect and contain sophisticated attack vectors
originated by malicious network entities. This deliverable describes the research activities in the
SUCCESS-6G-DEVISE project towards enhancing the security of the monitoring information. In
particular, we introduce an attack detection mechanism empowered by reinforcement learning to
detect a wide range of attack vectors from unlabelled vehicular data instances. The applicability of the
Transport Layer Security (TLS) 1.3 protocol in the communication channels between the on-board unit
(OBU) client and the server is also discussed as an additional means of enhancing security, data privacy,
and integrity.
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1 Introduction

Despite the multitude of benefits offered by Vehicle-to-Everything (V2X) communication,
vulnerabilities and security breaches are not uncommon in vehicular networks. The peculiar
characteristics of V2X systems, in conjunction with the increased levels of connectivity and driving
autonomy, introduce entirely new security concerns and issues that have not been addressed in a
similar context before. As a result, evolving security requirements are expected to be more stringent
as services and applications for the automotive sector will be often mission critical. Vehicular services
exhibit idiosyncrasies in terms of functionalities and deployment scenarios, with several security
threats lurking in. This complex V2X connectivity landscape renders the attack surface sufficiently large
with expanded threat vectors, calling for innovative security solutions.

Aiming to address this limitation, the scientific approach of SUCCESS-6G-DEVISE aims at leveraging the
advanced capabilities of Artificial Intelligence/Machine Learning (Al/ML) technologies as an effective
means to enhance security in V2X connectivity and address vulnerabilities. Secure condition
monitoring requires an effective and timely prediction of maliciously abnormal data in order to
guarantee robust operation of the predictive maintenance service. Condition monitoring data used for
subsequent predictive diagnostics need to be properly secured in untrusted V2X environments such
that they do not contain falsified information, while abnormal traffic will be detected and isolated in
its entirety. In SUCCESS-6G, we aim to develop defensive mechanisms towards a secure condition
monitoring framework for situational awareness of vehicles’ health.
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2  Secure vehicular condition monitoring with ensemble learning

2.1 Problem statement and motivation

Secure and trustworthy condition monitoring of vehicles’ health is crucial to maintain the stability of
predictive maintenance systems for vehicles. Message exchange between the vehicle and the
maintenance control centre needs to take place in a secure and robust manner in order to properly
communicate the identification of defects in vehicles, such as malfunctions of components. However,
recent advances in vehicle-to-everything (V2X) connectivity come inadvertently with security
vulnerabilities and evolving threat vectors which may destabilize system operation and degrade
network performance. Attackers with malicious intents may inject incorrect/erroneous data in the
monitoring information communicated to the control/maintenance centres [1]. Such actions often
become difficult to detect and contain, since malicious nodes may alter their activity intelligently over
time. In this context, real-time detection of abnormal data is essential in order to alleviate the
propagation of potential malicious data across edge infrastructure and provide an additional means to
guarantee the trustworthiness of exchanged vehicular information.

Aiming to address the complex V2X security landscape, several recent works leverage Al tools for
detection of abnormal vehicular information [2], [3], [4]. Authors in [2], [3] focus on identifying position
falsification attacks using conventional supervised learning techniques on labelled datasets. However,
such schemes may be impractical in real-time V2X scenarios with expanded attack surface, due to
limited access to labelled training examples and/or dependence on security threshold values. In [4], a
deep neural network architecture is introduced to detect all types of attacks in the open-source
VeReMi dataset [5]. Yet, unforeseen changes in V2X traffic, due to either naturally drifting mobility
patterns or unprecedented malicious activity, introduce challenges (e.g., model overfitting) to deep-
learning-based attack identification methods.

Motivated by these research questions, we have introduced in [6] an edge-based security framework
for secure and trustworthy vehicular data monitoring based on ensemble learning. Our approach
jointly combines i) an unsupervised learning layer for discovering hidden patterns from unlabelled
vehicular traffic traces, and ii) a reinforcement learning (RL) layer for consistently improving malicious
data detection over unknown V2X environments without relying on security thresholds. We employ
the K-means algorithm to cluster and annotate data instances, and, subsequently, train an RL-based
detector to discriminate genuine vehicles from malicious ones. Label provisioning facilitates the
generation of reward signals for the detector decisions at each time-step, by comparing with the
acquired ground truth information. An in-depth assessment of our learning framework using the
VeReMi dataset reveals meaningful insights for the detection performance over various attack types.
Compared to benchmark classifiers, our approach exhibits superior or equivalent detection
performance in the presence of potentially inaccurate or mislabelled training data. Finally, in an effort
to gain perspective on the real-time capabilities of our detection framework, we evaluate the overall
latency required for detecting an attack. Detection latencies are shown to comply with edge-related
requirements, making our approach suitable for SUCCESS-6G use cases.
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2.2 Network scenario and attack model
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Figure 1: V2X network scenario [6]

Figure 1 illustrates the considered V2X network scenario, where vehicles periodically transmit basic
safety messages (BSMs). We assume that vehicular monitoring information is embedded in the BSMs
which include the position, speed, acceleration and heading angle of each vehicle, and other relevant
information. A roadside unit (RSU) receives BSMs from vehicles located within its coverage, and the
edge/cloud server aggregates information from RSUs deployed in a large geographical area. A vehicle
transmitting falsified monitoring information embedded in BSMs is considered as an attacker (i.e.,
malicious vehicle). There exist a number of attack types that can potentially undermine V2X security,
as prescribed in VeReMi dataset [5].

In what follows, we briefly discuss a set of V2X attacks relevant to our scenario.

Sybil attack: A vehicle may use multiple valid pseudonyms of compromised vehicles to realize an attack
while concealing its real identity (ID). For instance, an attacker may generate fake road traffic
congestion with a grid of ghost vehicles in a selected geographical region. Valid pseudonymous IDs and
BSM frequency may be used for every ghost vehicle.

Data replay attack: A vehicle re-transmits or replays valid BSMs previously received from other
vehicles. In this case, the vehicle uses its own ID while replaying the data and tries to exploit the
conditions that existed at the time of the original BSM transmission. The attack could also be carried
out in Sybil mode by changing the attacker ID.

Denial-of-service (DoS) attack: A vehicle transmits BSMs at a frequency higher than the limit set by
the standard. Such high volume of data transmission would result in extensive periods of network
congestion and unavailability to serve other legitimate vehicles. DoS attacks may also be launched by
setting all BSM fields to random values (i.e., DoS random). Such behaviours can be concealed in a subtle
way using compromised vehicles' identities (Sybil mode).

Disruptive attack: The pattern of this attack is similar to data replay, where a vehicle re-transmits
previously sent messages by other vehicles. BSMs are selected at random and flood the network with
stale data to disrupt genuine information from being propagated. This attack may also be carried out
in DoS and Sybil modes.
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2.3 Proposed approach
Figure 2 depicts our proposed data-driven detection framework. Our methodology comprises four key
steps:

1. Messages (including genuine and attack information) are retrieved from the raw V2X data.

2. Message preprocessing allows the extraction of relevant feature vectors for various attack
types.

3. An unsupervised learning module clusters and subsequently annotates data instances per
attack type.

4. An RL component leverages the labelled data instances to detect and classify various attack
types.
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Figure 2: Proposed ensemble learning framework for unsupervised data preprocessing and RL-based abnormal
data detection [6].

In what follows, we elaborate on the learning components of our detection framework.
23.1 Unsupervised learning for clustering and labeling

Unsupervised learning aims to discover hidden patterns underlying in data without relying on label
information. Clustering, an unsupervised learning task, typically relies on the assumption that normal
data instances belong to large and dense clusters, while anomalies either belong to small or sparse
clusters [7]. This is the case for VeReMi dataset, where the proportion between misbehaving and
genuine vehicles for each attack scenario is approximately 30% to 70%, respectively [5]. Each attack
scenario contains two BSM types, namely genuine and misbehavior, but cannot clearly categorize data
instances into these types without labels. In this work, we leverage the K-means algorithm to cluster
unlabeled V2X data instances into genuine and misbehavior groups. K-means is chosen for its simplicity
and favorable characteristics, as it attempts to group together data instances that are mutually close
in Euclidean space. Advantages such as scaling to large datasets, controlling the number of clusters to
extract, and generalizing to clusters of different shapes and sizes, e.g., spherical and elliptical clusters,
render K-means well-suited for our study case.

The goal of K-means clustering is to generate ground truth information that is necessary for the
subsequent RL-based attack detection and classification. For each cluster, a centroid is defined, which
represents the mean of the data instances assigned to the cluster. K-means works iteratively to assign
data instances to one of the K clusters based on the given features. In each iteration, the algorithm
measures the similarity of data instances by computing their Euclidean distance from the centroid on
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the dimension of the feature vector. As such, if a data point belongs to a particular cluster, then it is
closer to the considered centroid than any other centroids. Finally, all data instances are assigned to
their clusters based on pairwise feature similarity.

At its inception, K-means algorithm requires the number of clusters and initial centroid positions. Since
these values are initially unknown, a commonly used method is to resort to random initialization of
centroid locations for a range of clusters. The Elbow method [8] is also used to determine the optimum
number of K clusters for an attack scenario. Once K is determined, K-means groups data instances for
each attack scenario and the algorithm then generates the ground truth information. The inherently
imbalanced VeReMi dataset is expected to generate a large cluster size for genuine instances, and a
smaller size for misbehaving ones. Thus, upon algorithm convergence, instances belonging to the
cluster with the lowest number of samples are labeled as misbehaving (label “1”), while the rest as
genuine (label “0”).

2.3.2 Reinforcement learning model

Markov decision process (MDP) offers a modelling framework [9] for attack detection with sequential
decision-making over V2X data traces. An MDP is defined as a tuple of five elements, i.e., M =<
S,A,P,R,y >, where § is the set of states, A the set actions, P:§ X A X § +— [0,1] is the state
transition probabilities function, R:S — R denotes the reward function with a set of possible
rewards, and y € (0,1) denotes the discount factor which reflects the importance of immediate and
long-term future rewards. The action of attack detection will change the environment based on the
decision of either genuine or malicious behavior at time-step t; subsequently, the next decision at
time-step t + 1 will be influenced by the changing environment at previous time-step t.

As shown in Figure 1, the aggregated V2X data at the edge node (i.e., RSU) constitute
a time-series repository of received BSMs with intrinsic temporal and spatial interdependencies. We
hereby consider an RL-based attack detector deployed at the edge RSU. The detector (agent) interacts
with the V2X environment to learn the optimal detection policy . Based on the current state s;, the
agent takes an action a; to maximize its reward r;. The agent is then rewarded by the environment,
and the environment moves to state s;,, following the MDP.

The process described above iterates until an optimal detection policy i is learned. The Q-learning
method [10] is adopted to train the RL model to estimate the action-value function Q(s, a). Since it is
practically infeasible to use tabular Q-learning with a very large Q-table for V2X state-action space, we
utilize a deep learning method for function approximation. In particular, we leverage an artificial neural
network (ANN) to approximate the action-value function Q(s, a). In turn, the agent ANN can effectively
learn to map input states to Q-values. The e-greedy method is used while training to strike a balance
between exploration and exploitation in the agent strategy.

The agent receives the V2X time-series data and prior related decisions as inputs (i.e., state s; ), and
generates the new decision made (i.e., action a; ) as output. At each timestep t, the agent actions are
selected by the policy . The agent experience, i.e., e; = (S¢, At 1%, Sg4+1), Stores all the behaviors of
the detector. By exploiting experience, the detector is improved to obtain a better estimation of the
Q (s, a) function. This process is referred to as experience replay memory, through which deep Q-
learning achieves stability [11]. During this process, the agent randomly samples batches from the
experienced buffer to learn from. The main objective is to maximize the expected sum of future
discounted rewards by learning the optimal detection policy. The discounted reward return is
expressed as

where T represents the number of time steps in an episode of training. Q-learning model updates are
performed with learning rate « as
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Q(sp,ar) < Qs ar)

+a (Tt + ylgltaXQ(Slle A1) — Q(se, at)) .
+1

The environment controls the training of the agent. After receiving a; performed by the agent, the
environment generates a reward 7 and the next environment state s, for the agent. As shown in
Figure 2, the environment contains a large population of BSMs with ground truth information
generated via the procedure described in Section 2.3.1.

The state contains the sequence of previous actions denoted by S.ction =< At—1, Aty vvr Appn_1 >, and
the current BSM information denoted by syme =< X¢, X¢t1s oor Xean >. Xp € R is a d-dimensional
feature vector at time-step t, including information on d different features. According to the state
design, the next action taken by the agent depends on the previous actions and the current V2X
information. The action space is defined as A = {0,1}, where 1 indicates the detection of an attack
and 0 represents the genuine behavior. The deterministic detection policy ™ can be expressed as a
mapping, i.e., m: S +— A, from states to actions, where (s) denotes the action that the agent takes
at state s.

In a given state s;, the agent selects the action based on the optimal detection policy given by

m* = arg maxQ*(s, a).
a€A

The reward 1; helps the agent to explore an environment with different states and learn an effective
detection policy. The reward signals are emitted as feedback (i.e., positive/negative) for an a; taken in
S¢. A numerical value for 1 is assigned based on the ground truth information of BSMs. Specifically, a
positive reward is given to the agent for correctly detecting an attack, i.e., true positive (TP), or a
normal state, i.e., true negative (TN). A negative reward is otherwise provided for incorrect
identification of a normal state as an attack, i.e., false positive (FP), or an attack as a normal state, i.e.,
false negative (FN). The agent is penalized more for FN actions than for FPs since the correct
identification of an attack is indispensable to avoid hazardous and life-threatening situations.

2.4 Experiments and results

In this section, we evaluate the effectiveness of our ensemble learning approach for V2X attack
detection by performing experiments using the VeReMi dataset [5].

24.1 Dataset description and preprocessing

The VeReMi dataset comprises 19 attack variants to simulate different attack types. Two vehicular
traffic densities are prescribed for each attack scenario: high-density (37.03 vehicles /km? ) and low-
density (16.36 vehicles /km? ). In each scenario, a JSON log file per vehicle is created to record the raw
data exchanged (i.e., genuine and attack messages) between neighboring vehicles. BSMs include three-
dimensional vectors for the position, speed, acceleration, and heading angle features. During
preprocessing, all JISON files with the raw data were converted to CSV format and then concatenated
together; this was performed for each attack scenario to compile a CSV file with ordered BSM records
using their timestamps. Based on feature analysis, we select six fields, i.e., timestamp, pseudo-ID,
position, speed, acceleration, and heading angle, as the most relevant feature set related to attack
detection. The Euclidean norm of the position, speed, acceleration, and heading angle vectors is
further utilized. As shown in Figure 2, the feature-engineered dataset is then fed to the clustering
module to create the ground truth labels for each attack scenario.

Since the V2X edge/cloud server has presumably superior computational power over RSUs, we assume
that RL model training is offloaded onto the edge/cloud server. The trained model is then used at RSUs
for testing. Detection is performed at RSUs, as the vehicle may not have the complete information in
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its range during a short period. In our experiments, the high-density dataset was used to train the RL
model under each attack scenario to detect and learn attack patterns more frequently. On the other
hand, the low-density dataset was used to test the ability of the RL model to detect attacks when attack
patterns are less frequent.

2.4.2 Clustering performance

We evaluate K-means clustering performance by computing the silhouette coefficient [12] for a set of
attack scenarios in the VeReMi dataset. In particular, the average silhouette coefficient is computed
for each sample using i) the mean intra-cluster distance, i.e., between the sample and all other
instances in the same cluster; and ii) the mean inter-cluster distance, i.e., between the sample and all
other instances in the next nearest cluster. The silhouette score is bounded between -1 for incorrect
clustering and +1 for highly dense clustering, while a score close to 0 indicates overlapping clusters. A
performance comparison between K-means and spectral clustering [13] in terms of average silhouette
score is depicted in Table 1 for three representative attack scenarios. The spectral clustering algorithm
treats data clustering as a graph partitioning problem and offers equivalent simplicity as K-means. It
can be observed that K-means outperforms spectral clustering with higher scores for all three attack
scenarios.

Table 1: Average silhouette score

Attack scenario K-means Spectral
Constant position 0.719 0.206
Random speed 0.719 0.152
Random speed offset 0.718 0.059
243 Detection performance

To assess the detection performance of our proposed framework, we compute the Accuracy, Precision,
Recall, and F1 score metrics, by considering both genuine and attack classes for each attack type in
VeReMi. The F1 score provides the harmonic mean between precision and recall; thus, higher F1 values
indicate better performance. We hereby differentiate between effectively and moderately detected
attacks, as follows.

2.4.3.1 Effectively detected attacks

Table 2 depicts the performance of RL-based detection per attack for 19 attack types. Results show
that 13 attack types can be effectively detected with over 0.90 F1 score, resulting in high recall and
high precision values at the same time. In particular, high F1 values of 0.98 are achieved for attack
types 1, 3, 5-8, and 16. Recall values of 1.0 demonstrate that these attack types can be accurately
detected with zero FNs. This can be indirectly attributed to the effective clustering performed by K-
means, which allows the RL model to be trained with accurate reward signals. In addition, the RL model
is penalized more for FNs than FPs, tolerating FPs to an extent that is not excessive. This also
contributes to higher recall over precision values.

Table 2: Detection performance per attack type

Type Attack Accuracy Precision Recall F1
1 Constant Position 0.9892 0.9648 1.0 0.9820
2 Constant Position Offset 0.9853 0.9512 1.0 0.9750
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3 Random Position 0.9915 0.9724 1.0 0.9860
4 Random Position Offset 0.9831 0.9454 1.0 0.9719
5 Constant Speed 0.9918 0.9733 1.0 0.9864
6 Constant Speed Offset 0.9895 0.9661 1.0 0.9874
7 Random Speed 0.9924 0.9751 1.0 0.9874
8 Random Speed Offset 0.9913 0.9716 1.0 0.9856
9 Sudden Stop 0.8038 0.5839 0.7080 0.6400
10 Disruptive 0.9610 0.9868 0.9205 0.9525
11 Data Replay 0.9698 0.9826 0.9461 0.9640
12 Delayed Messages 0.9438 0.8445 1.0 0.9157
13 DoS 0.9539 0.9928 0.8922 0.9398
14 DoS Random 0.6411 0.6338 1.0 0.7759
15 DoS Disruptive 0.6353 0.6306 1.0 0.7735
16 Traffic Congestion Sybil 0.9895 0.9661 1.0 0.9827
17 Data Replay Sybil 0.7527 0.6166 0.9612 0.7512
18 DoS Random Sybil 0.7973 0.9507 0.4845 0.6419
19 DoS Disruptive Sybil 0.6501 0.8608 0.0714 0.1318

Figure 3a shows the outcome of K-means clustering for attack 1, where attack instances are discerned
and clustered using the acceleration feature. We observe that resulting clusters are elliptical shaped
instead of spherical; such shape improves clustering performance by allowing different widths per
dimension. In attack 1 (i.e., constant position), the attacker sends fixed position coordinates that do
not accurately correlate in time with the reported kinematic information. The attack can thus be
discerned using such mismatch. On the contrary, detection of attack 2 (i.e., constant position offset) is
more challenging compared to attack 1, as the attacker sends fixed position coordinates by
adding/subtracting a constant offset.

(a) Constant position (b) DoS random Sybil

(¢) Sudden stop (d) DoS disruptive Sybil

Figure 3: K-means clustering output (K = 2) with misbehaving data in red [6]
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2.4.3.2 Moderately detected attacks

Detection performance in Table 2 reveals that for a set of attacks (e.g., attack types 9, 14-15, and 17-
18), RL-based detection performs moderately with F1 scores in the range of 0.64 to 0.78. Out of these
attacks, attack 18 yields 0.6419 of F1 score with a lower recall of 0.4845, resulting in increased FNs. In
attack 18 (i.e., DoS random Sybil), the attacker executes a typical DoS attack in Sybil mode, setting all
BSM fields to random values. As shown in Figure 3b, K-means does not effectively cluster data
instances. This, in turn, results in low detection performance of RL-based scheme due to the noisy
ground truth labels generated via K-means. Attack 18 corresponds to a high-frequency attack with
dense data streams and requires a high-dimensional feature vector to be discerned. It appears that K-
means algorithm falls short in clustering such data.

A similar performance trend can be identified for attack 9, where RL-based detection reports an F1
score of 0.64, and a 0.5839 precision value. In attack 9 (i.e., sudden stop), the attacker demonstrates
a genuine behavior for a limited period and then stops based on a predefined probability. However,
there is no certainty that the attacker is eventually going to stop. Due to such behavior, as observed in
the overlapping areas of Figure 3c, K-means is not capable of assigning data instances to the closest
cluster centers, resulting in noisy ground truth labeling. Further, the attackers’ erratic behaviour over
time deceives the detector into incorrectly identifying the genuine state as an attack, resulting in an
increased FP rate.

It is to be noted that attack type 19 yields an F1 score of 0.1318 which is the lowest detection
performance overall in the VeReMi dataset. Attack type 19 (i.e., DoS disruptive Sybil) is a high-
frequency attack with dense data streams. Similar to attack type 18, K-means results in poor clustering
performance, as shown in Figure 3d. In turn, RL-based detection ends up in low detection scores.
Overall, we can observe that the sensitivity of the K-means algorithm appears to be largely dependent
on the attack scenario, e.g., density and attack type, which strongly impacts the detection rate.

2.4.4 Benchmark comparison

In this subsection, the impact of noisy labels on the detection performance of our ensemble learning
framework is further explored. Considering label provisioning via the K-means algorithm, we
comparatively assess the detection outcome of our approach with respect to two benchmark
misbehavior detectors, namely support vector machine (SVM) and multilayer perceptron (MLP)
classifiers [14], for four representative attack types, as shown in Table 3. For a fair comparison, the
models of both techniques were trained on the same data, using the same feature set as in our RL-
based detector. For SVM, a two-class model was trained to classify genuine vehicles from misbehaving
ones. The selection of model hyperparameters, such as the regularization parameter for SYM and
hidden layer sizes for MLP, impacts the classifier outputs. Thus, we conducted experiments with grid
search to find the optimal model for each method, following configurations in [1], [14].

Table 3: Detection performance comparison

Attack type Approach Accuracy Precision Recall F1

K-means + MLP 0.9902 1.0 0.9669 0.9831

1 K-means + SVM 0.9418 1.0 0.8031 0.8908
K-means + RL 0.9892 0.9648 1.0 0.9820

K-means + MLP 0.5412 0.2057 0.3007 0.2443

9 K-means + SVM 0.5348 0.2066 0.3122 0.2486
K-means + RL 0.8038 0.5839 0.7080 0.6400

K-means + MLP 0.4604 0.4407 1.0 0.6118

10 K-means + SVM 0.9385 0.8868 0.9805 0.9313
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K-means + RL 0.9610 0.9868 0.9205 0.9525

K-means + MLP 0.6141 0.6084 0.9781 0.7502

16 K-means + SVM 0.6711 0.6582 0.9257 0.7693
K-means + RL 0.9895 0.9661 1.0 0.9827

It can be observed that the detrimental effect of potentially inaccurate or mislabeled training data
limits the detection performance of SVM and MLP detectors. When wrong, imprecise, or inconsistent
labels are provided as training inputs by the K-means to SVM and MLP schemes, discrimination
between genuine and malicious instances becomes erroneous due to the inaccurate ground truth
labeling. Interestingly, RL-based detection is shown to be less sensitive to inaccurate labels and exhibits
superior or equivalent detection performance compared to SVM and MLP. The fundamental hallmark
of RL constitutes the ability to infer optimal sequential decisions in the interactive V2X environment
based on rewards/penalties received as a result of previous actions and experiences. This renders
detection more robust to noisy training data since RL is capable of partly rectifying the mismatch of
training labels. This can be clearly noticed for the effectively detected attacks 1, 10 and 16. For the
moderately detected attack 9, detection performance expectedly registers a decline (as discussed in
Section 2.4.3.2), albeit not at prohibitive levels.

245 Analysis of real-time detection

The real-time performance of the RL-based scheme was also assessed in respect of the time taken to
detect attacks. For each attack scenario, the time elapsed for the following three steps is measured
separately to approximate the overall latency: (i) environment setup, (ii) loading a trained model, and
(iii) detection. The CDF graph in Figure 4 illustrates the overall latency for all 19 attack types, while the
average latency measured for steps (i)-(iii) is 19.93 ms, 182.12 ms, and 3.15 ms, respectively. We can
observe that an approximate average latency budget of 205 ms is required from setting up the
environment for streaming data until detecting attacks. Detection latency is in the order of 3-4 ms,
which is considered acceptable for many road safety applications, as periodic beacons are usually
broadcast with a frequency of 1-10 Hz.
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Figure 4: CDF of overall latency for testing datasets [6]

2.5 Summary

To ensure secure and trustworthy condition monitoring of vehicles’ health, an ensemble learning
framework was introduced for attack detection in vehicular networks. Our approach jointly considered
an unsupervised learning module and an RL component to detect various attack types from unlabeled
vehicular data instances. While the majority of attack variants can be effectively detected, detection
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was curtailed for certain attack types due to the moderate performance of the clustering algorithm
and the erratic behavior of attackers. Yet, RL-based attack detection is shown to be more robust to
noisy training data compared to its classifier counterparts. In the path forward, we will direct our
efforts towards incorporating trust of RSU components into collaborative attack detection, by
leveraging the real-time capabilities of our framework.
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3  Security mechanisms for in-vehicle data communications

3.1 Communications in the vehicle domain
3.1.1 CAN bus

The Controller Area Network (CAN) bus is a vital component in modern vehicles, serving as a
communication network that enables various On-Board Units (OBUs) to exchange data efficiently.
However, while CAN bus technology provides numerous benefits for vehicle functionality, it also
presents certain security challenges that need to be addressed.

The CAN bus is a robust serial communication protocol that facilitates real-time data exchange
between OBUs in vehicles. It enables OBUs responsible for functions like engine control, transmission,
brakes, and airbags to communicate seamlessly, enhancing vehicle performance, safety, and
efficiency. Despite its widespread adoption, the CAN bus is susceptible to security vulnerabilities due
to its inherent design. One significant concern is the lack of built-in security features such as
authentication or encryption, delegating all information security through the obfuscation of data.

In technical terms, the CAN protocol is structured around two main layers: the Data Link Layer and the
Physical Layer. In the context of high-speed CAN, ISO 11898-1 delineates the responsibilities of the
Data Link Layer, which manages logical linking, media access control, and physical coding. Conversely,
ISO 11898-2 outlines the functions of the Physical Layer, which include bit encoding/decoding, bit
timing, and synchronization.

j Diagnostics

Central Gateway
CANFD L OBDII connector
Chassis Bus CAN Powertrain CAN Infotaiment CAN
ECU | ECU [ ECU

ECU

n
ECU [ | ECU ’_ ECU
}

ECU ' | ECU

ECU | ECU ECU

Figure 5: Common in-vehicle CAN bus architecture.

To partly mitigate this security gap, current in-vehicle architectures commonly feature a Central
Gateway ECU (as shown in Figure 5) tasked with segregating the most sensitive information, such as
brake ECU and engine ECU data, from the rest of the CAN bus domain. When a user accesses the CAN
bus through the OBDII interface, they are essentially accessing the data collected by the Gateway ECU
from the other ECUs, thus preventing physical access to the most critical ECUs.

3.2 Communications in the public network domain
3.2.1 Cryptography overview
Cryptography serves as the cornerstone of secure communications, using mathematical techniques to

protect data from unauthorized access and manipulation. A fundamental aspect is the symmetric and
asymmetric encryption, where the first uses a single key for both encryption and decryption process.
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Common algorithms, such as Advanced Encryption Standard (AES), exemplify the strength and
efficiency of symmetric encryption. Asymmetric encryption, on the other hand, introduces the use of
key pairs: a public key for encryption and a private key for decryption (or vice versa). Algorithms like
RSA, an established asymmetric encryption method, and Elliptic Curve Cryptography (ECC), another
widely used alternative, play a vital role in secure communication using this approach. Hash functions
are cryptographic tools that transform input data into fixed-size hash digests. These digests are utilized
for integrity verification and creating digital signatures. Examples include SHA-256, which
demonstrates the importance of cryptographic hash functions in ensuring data integrity.

Digital signatures contribute to the verification of authenticity and integrity, key mechanisms for
security. As shown in Figure 6, created with a private key and verified with the corresponding public
key, digital signatures provide a strong means of ensuring the legitimacy of messages or documents.
In the aforementioned asymmetric cryptography, there are mechanisms for key exchange, such as
Diffie-Hellman, which facilitate the secure exchange of secret keys, forming the basis for establishing
secure communication channels. The last but not least security mechanism is Perfect Forward Secrecy
(PFS), which further improves security by generating unique session keys for each communication
session, even if long-term private keys are compromised.

Asymmetric
Key Pair
—t Public key == Private key —i
e E—
Encryption Decryption
Plaintext P Ciohertext P Plaintext
(Sender) P (Receiver)

Figure 6: Asymmetric key pair diagram
3.2.2 Public Key Infrastructure (PKI)

A Public Key Infrastructure (PKI) is a fundamental framework in modern cryptography, facilitating
secure communication and digital transactions over networks. At its core, PKI comprises a set of
hardware, software, policies, and procedures designed to manage the generation, distribution, usage,
and revocation of digital certificates and cryptographic keys. The primary components of a PKl include
a Certificate Authority (CA), Registration Authority (RA), Certificate Repository, and end entities. The
CA acts as a trusted entity responsible for issuing and managing digital certificates, which bind public
keys to individuals or entities. The RA assists in the enrollment and validation process, ensuring that
certificate requests meet predefined criteria before submission to the CA. The Certificate Repository
stores issued certificates and associated public key information, enabling users to access and verify the
authenticity of digital identities. End entities, such as users or devices, utilize digital certificates to
establish secure communication channels, authenticate identities, and validate data integrity.

3.23 TLS1.3

TLS 1.3 is the latest iteration of the Transport Layer Security (TLS) protocol and has introduced
significant enhancements in the security and efficiency of online communications. It stands out for its
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advanced implementation of asymmetric cryptography, particularly in optimizing the connection
establishment process by reducing message exchanges and efficiently utilizing algorithms such as the
aforementioned, Diffie-Hellman. A distinctive feature of TLS 1.3 is its focus on eliminating older
versions and insecure protocols, exclusively promoting robust cryptographic methods (cipher suites).
Additionally, it prioritizes the concept of PFS, generating unique session keys for each interaction, even
in scenarios where long-term private keys may be compromised. This protocol also demonstrates a
commitment to reducing latency, contributing to improved performance by streamlining the process
of establishing secure connections, thus benefiting the loading speed in applications and other online
contexts.

To ensure security in communications within the public network domain, the cryptographic protocol
TLS 1.3 will be used in SUCCESS-6G.

3.2.3.1 Handshake process
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Figure 7: Sequence diagram TLS 1.3 over TCP

As shown in Figure 7, the key steps of the handshake process are as follows:

1. ClientHello: The client initiates the handshake by sending a message called ClientHello to the
server. This message includes information such as supported TLS versions, cipher suites, and other
parameters.

2. ServerHello: The server responds with a ServerHello message, selecting the highest TLS version
supported by both the client and the server. The server also chooses a cipher suite and sends its
digital certificate (if required).

3. Key Exchange: The key exchange process varies depending on the chosen cipher suite. In
traditional key exchange methods, the server's public key is sent to the client, and a shared pre-
master secret is established. In TLS 1.3, key exchange is performed differently to improve efficiency
and security, utilizing a process called "Diffie-Hellman Key Exchange" or "Pre-Shared Key" (PSK)
modes.

4. Authentication and Certificate Verification: If the server provides a digital certificate, the client
verifies the certificate's authenticity. This step is crucial for ensuring that the client is
communicating with the intended server.

5. Pre-Master Secret Exchange: Both the client and the server contribute to generating a pre-master
secret. In TLS 1.3, the pre-master secret is derived during the key exchange phase.
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6. Session Key Derivation: The pre-master secret is used to derive the session keys that will be used
for encryption and integrity protection during the secure communication session.

Once the TLS handshake is complete, the client and server can communicate securely using the
established session keys. TLS 1.3 introduces improvements to the handshake process, making it more
efficient and secure compared to previous versions. Key differences in TLS 1.3 include the elimination
of unnecessary round trips and a reduction in the number of messages exchanged during the
handshake, resulting in faster and more secure connections.

3.2.3.2 Cipher suites

TLS 1.3 introduces a streamlined set of cipher suites, focusing on modern and secure cryptographic
algorithms. The most used cipher suites in TLS 1.3 are designed to provide strong security while
minimizing latency, here are some of the commonly used cipher suites in TLS 1.3:

e TLS_AES_128 GCM_SHA256: This cipher suite uses the AES-GCM encryption algorithm for
confidentiality and SHA-256 for message authentication. It's one of the recommended and
widely used cipher suites.

e TLS_AES_256_GCM_SHA384: Similar to the previous one, this cipher suite employs the
stronger AES-256-GCM encryption algorithm and SHA-384 for message authentication.

e TLS_CHACHA20_POLY1305_SHA256: This cipher suite utilizes the ChaCha20-Poly1305
encryption algorithm for confidentiality and SHA-256 for message authentication. It provides
an alternative to the AES-based cipher suites.

e TLS_AES_128 CCM_SHA256: This cipher suite combines the AES-CCM encryption algorithm
with SHA-256 for message authentication. It offers an alternative to GCM and ChaCha20-
Poly1305.

e TLS_AES_128_ CCM_8_SHA256: Similar to the previous one but with shorter authentication
tags (8 bytes instead of 16 bytes). This can be useful in situations where a shorter tag is
preferred.

e TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256: This cipher suite uses the Elliptic Curve
Diffie-Hellman Ephemeral (ECDHE) key exchange mechanism with RSA for authentication, AES-
128-GCM for encryption, and SHA-256 for message authentication.

e TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384: Similar to the previous one but using AES-
256-GCM for encryption and SHA-384 for message authentication.

3.2.3.3 Encryption types

TLS uses both symmetric and asymmetric encryption during the communication process. The
combination of these two encryption methods is employed to achieve a balance of efficiency and
security.

e TLS Symmetric encryption: It is used for the bulk of the data transmission. In TLS, a symmetric
key is generated for each session, known as the "session key" or "shared secret." This key is
used for encrypting and decrypting the actual data being transmitted between the client and
the server. Symmetric encryption is more computationally efficient than asymmetric
encryption, making it suitable for encrypting the large volume of data exchanged during a
session.

e TLS Asymmetric encryption: It is utilized for key exchange and authentication during the TLS
handshake. During the initial phase of establishing a secure connection, the server presents its
digital certificate, which contains its public key. The client can use the server's public key to
encrypt a pre-master secret and send it back to the server. The server, possessing the
corresponding private key, can then decrypt the pre-master secret. This process enables the
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secure exchange of secret information without directly transmitting the symmetric session
key.

3.2.3.4 Hash functions

TLS 1.3 uses hash functions primarily for two purposes: the handshake message integrity and the
generation of the "Finished" message during the TLS handshake. The hash functions used in TLS 1.3
are part of the HMAC (Hash-based Message Authentication Code) construction. The primary hash
functions used in TLS 1.3 are:

e SHA-256 (Secure Hash Algorithm 256-bit) is a cryptographic hash function that produces a 256-
bit hash value. In TLS 1.3, SHA-256 is commonly used in the HMAC construction for message
authentication during the handshake.

e SHA-384 (Secure Hash Algorithm 384-bit) is another cryptographic hash function but produces
a longer, 384-bit hash value. In TLS 1.3, SHA-384 is also used in HMAC for message
authentication.

These hash functions contribute to the integrity and authenticity of handshake messages exchanged
during the TLS handshake process. The use of HMAC ensures that any tampering or modification of
handshake messages can be detected by the communicating parties.
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4 Conclusions

This deliverable describes the research activities in the SUCCESS-6G-DEVISE project towards enhancing
the security of the monitoring information. In particular, we have presented an attack detection
mechanism based on ensemble learning, comprising an unsupervised learning module and an RL
component, to detect accurately attack vectors from unlabelled vehicular data instances. The
applicability of the TLS 1.3 protocol in the communication channels between the OBU client and the
server is also discussed as an additional means of enhancing security, data privacy, and integrity.
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